This commit is contained in:
mrq 2024-09-17 22:26:31 -05:00
parent be22b65300
commit f00283440c

View File

@ -58,7 +58,7 @@ def process(
min_duration=0, min_duration=0,
max_duration=0, max_duration=0,
storage_backend="local" storage_backend="slop"
): ):
global tts global tts
@ -72,23 +72,15 @@ def process(
if tts is None: if tts is None:
tts = init_tts( yaml=yaml, restart=False, device=device, dtype=dtype ) tts = init_tts( yaml=yaml, restart=False, device=device, dtype=dtype )
queue = []
features = {} features = {}
similarities = {}
sorted_similarities = {}
mfcc = None mfcc = None
slop = False # should probably have a better name for this, but it governs whether to just sum the entire sequence of embeddings into one embedding to make life easier simplified_metadata = True # aims to slim down the raw data in the JSON to store
if storage_backend == "faiss": slop = True # should probably have a better name for this, but it governs whether to just sum the entire sequence of embeddings into one embedding to make life easier
slop = True
elif storage_backend == "chunkdot":
slop = True
elif storage_backend == "slop":
slop = True
# compute features (embeddings if quantized already, MFCC features if raw audio) # compute features (embeddings if quantized already, MFCC features if raw audio)
for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path}'", disable=not verbose): for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path.name}'", disable=not verbose):
extension = filename.split(".")[-1] extension = filename.split(".")[-1]
filename = filename.replace(f".{extension}", "") filename = filename.replace(f".{extension}", "")
@ -123,11 +115,13 @@ def process(
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()] artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"] duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
"""
if 0 < min_duration and duration < min_duration: if 0 < min_duration and duration < min_duration:
continue continue
if 0 < max_duration and max_duration < duration: if 0 < max_duration and max_duration < duration:
continue continue
"""
qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device) qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device)
@ -142,11 +136,13 @@ def process(
duration = wav.shape[-1] / sr duration = wav.shape[-1] / sr
"""
if 0 < min_duration and duration < min_duration: if 0 < min_duration and duration < min_duration:
continue continue
if 0 < max_duration and max_duration < duration: if 0 < max_duration and max_duration < duration:
continue continue
"""
if mfcc is None: if mfcc is None:
mfcc = T.MFCC(sample_rate=cfg.sample_rate) mfcc = T.MFCC(sample_rate=cfg.sample_rate)
@ -175,119 +171,20 @@ def process(
sim = list(I[0][1:]) sim = list(I[0][1:])
print(f'{filename}: {sim}') print(f'{filename}: {sim}')
""" """
if metadata_path is not None:
faiss.write_index(index, str(metadata_path.with_suffix(".faiss")))
return return index
""" # do batch cosine similarity processing
# to-do: actually refine this, maybe
# desu it's not super easy to install with python3.12, and it is slower than FAISS in testing............
if storage_backend == "chunkdot":
from chunkdot import cosine_similarity_top_k
embeddings = torch.stack( list( features.values() ) ).cpu().numpy()
similarities = cosine_similarity_top_k(embeddings, top_k=8, show_progress=verbose)
print(similarities)
return
"""
metadata = None
if metadata_path is not None:
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if metadata_path.exists() else None
keys = list(features.keys()) keys = list(features.keys())
embeddings = torch.stack( list( features.values() ) )
sorted_similarities = {}
# do batch cosine similarity processing for filename in tqdm(keys, desc=f"Computing similarities: {speaker_path.name}"):
if slop: embedding = features[filename].unsqueeze(0)
embeddings = torch.stack( list( features.values() ) ) similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1).cpu().tolist()
sorted_similarities = {} sorted_similarities[filename] = similarities
#sorted_similarities[filename] = sorted([ ( i if simplified_metadata else keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
for index, filename in enumerate(keys):
embedding = features[filename].unsqueeze(0)
similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1).cpu().tolist()
similarities = sorted([ ( keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
sorted_similarities[filename] = similarities
most_filename, most_score = similarities[0]
least_filename, least_score = similarities[-1]
if metadata is not None:
if filename not in metadata:
metadata[filename] = {}
metadata[filename]["similar"] = similarities
if verbose:
print( f'{filename}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' )
if metadata is not None:
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( truncate_json( json.dumps( metadata ) ) )
return sorted_similarities
# an EXTREMELY naive implementation, fucking disgusting
queue = list(combinations(range(len(keys)), 2))
for key in tqdm(queue, desc="Computing similarities", disable=not verbose):
index_a, index_b = key
filename_a, filename_b = keys[index_a], keys[index_b]
swapped_key = (index_b, index_a)
if swapped_key in similarities:
similarities[key] = similarities[swapped_key]
continue
if slop:
embedding_a = features[filename_a]
embedding_b = features[filename_b]
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=0).mean().item()
else:
shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] )
embedding_a = features[filename_a][:shortest, :]
embedding_b = features[filename_b][:shortest, :]
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=1).mean().item()
similarities[key] = similarity
# combinations() doesn't have swapped keys
if swapped_key not in similarities:
similarities[swapped_key] = similarity
if index_a not in sorted_similarities:
sorted_similarities[index_a] = {}
if index_b not in sorted_similarities[index_a]:
sorted_similarities[index_a][index_b] = similarity
if index_b not in sorted_similarities:
sorted_similarities[index_b] = {}
if index_a not in sorted_similarities[index_b]:
sorted_similarities[index_b][index_a] = similarity
# sort similarities scores
for key, sorted_similarity in sorted_similarities.items():
sorted_similarities[key] = sorted([ ( key, similarity ) for key, similarity in sorted_similarity.items() ], key=lambda x: x[1], reverse=True)
most_filename, most_score = sorted_similarities[key][0]
least_filename, least_score = sorted_similarities[key][-1]
filename = keys[key]
if metadata is not None:
if filename not in metadata:
metadata[filename] = {}
metadata[filename]["similar"] = sorted_similarities[key]
#if verbose:
# print( f'{filename}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' )
if metadata is not None:
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( truncate_json( json.dumps( metadata ) ) )
return sorted_similarities return sorted_similarities
@ -299,9 +196,11 @@ def main():
parser.add_argument("--yaml", type=Path) parser.add_argument("--yaml", type=Path)
parser.add_argument("--text", action="store_true") parser.add_argument("--text", action="store_true")
"""
parser.add_argument("--trim-duration", type=float, default=3.0) parser.add_argument("--trim-duration", type=float, default=3.0)
parser.add_argument("--min-duration", type=float, default=0) parser.add_argument("--min-duration", type=float, default=0)
parser.add_argument("--max-duration", type=float, default=0) parser.add_argument("--max-duration", type=float, default=0)
"""
parser.add_argument("--storage-backend", type=str, default="slop") parser.add_argument("--storage-backend", type=str, default="slop")
parser.add_argument("--audio-backend", type=str, default="encodec") parser.add_argument("--audio-backend", type=str, default="encodec")
@ -320,15 +219,16 @@ def main():
speaker_name = name speaker_name = name
if "LibriTTS-R" in speaker_name: if "LibriTTS-R" in speaker_name:
speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox") speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox")
metadata_path = cfg.metadata_dir / f'{speaker_name}.json'
process( similarities = process(
speaker_path=cfg.data_dir / speaker_name, speaker_path=cfg.data_dir / speaker_name,
metadata_path=cfg.metadata_dir / f'{speaker_name}.faiss',
yaml=args.yaml, yaml=args.yaml,
text=args.text, text=args.text,
trim_duration=args.trim_duration, #trim_duration=args.trim_duration,
min_duration=args.min_duration, #min_duration=args.min_duration,
max_duration=args.max_duration, #max_duration=args.max_duration,
storage_backend=args.storage_backend, storage_backend=args.storage_backend,
audio_backend=args.audio_backend, audio_backend=args.audio_backend,
@ -339,6 +239,23 @@ def main():
verbose=True, verbose=True,
) )
if args.storage_backend == "faiss":
faiss.write_index(similarities, str(metadata_path.with_suffix(".faiss")))
return
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if metadata_path.exists() else {}
metadata_keys = list(metadata.keys()) if metadata else list(similarities.keys())
for filename, sim in similarities.items():
if filename not in metadata:
metadata[filename] = {}
metadata[filename]["similar"] = sim
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
#f.write( truncate_json( json.dumps( metadata ) ) )
# training # training
for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"): for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"):
add( data_dir, type="training" ) add( data_dir, type="training" )
@ -356,9 +273,10 @@ def main():
speaker_path=args.input_speaker, speaker_path=args.input_speaker,
yaml=args.yaml, yaml=args.yaml,
text=args.text, text=args.text,
trim_duration=args.trim_duration,
min_duration=args.min_duration, #trim_duration=args.trim_duration,
max_duration=args.max_duration, #min_duration=args.min_duration,
#max_duration=args.max_duration,
audio_backend=args.audio_backend, audio_backend=args.audio_backend,
device=args.device, device=args.device,