Commit Graph

29 Commits

Author SHA1 Message Date
mrq
230da8b559 should be the final things to scramble around for, DAC's 24KHz model is unusable for this, but both encodec's 24KHz and DAC's 44KHz work 2024-05-12 13:22:08 -05:00
mrq
2437a86efa ugh 2024-05-12 13:02:15 -05:00
mrq
4f1593c8db a bunch of shit to salvage my old encodec-quantized audio because dac-encoded audio just does not want to converge 2024-05-12 10:17:29 -05:00
mrq
14709ac67f ughh 2024-05-12 07:30:59 -05:00
mrq
c4b696ebeb oops 2024-05-09 22:33:40 -05:00
mrq
0d5d545a40 crammed in DAdaptation (doesn't seem worth it) and ScheduleFree (forgot I wanted to weeks ago, seems promising), optimization wrapper cleanup, test trainer changes, etc. 2024-05-09 20:28:20 -05:00
mrq
c6e0f905b5 final tweaks (again) before training restarts 2024-05-08 02:11:38 -05:00
mrq
215800484d correcting my wrong of assuming I could just use raw 24Khz audio in the 44Khz DAC without too much of an issue (there are issues) 2024-05-04 23:49:15 -05:00
mrq
9f738fbd5b seems I actually don't need RVQ bins 9-32 with the 24Khz DAC model........ (time to requantize my audio...) 2024-05-04 23:09:18 -05:00
mrq
a8ffa88844 it slipped my mind that technically DAC can be used at any sample rate, since it models waveforms; make it a config YAML option to allow this behavior 2024-04-19 18:36:54 -05:00
mrq
8214aa23d7 converting over to a different intermediary dataset format 2024-04-18 21:24:06 -05:00
mrq
4f5c9e518a actually use the passed-through sample rate from encode for DAC because it does its own resampling I guess 2024-04-18 13:32:41 -05:00
mrq
2e9e6e68f7 Forgot I need to use the DAC's 44K model because 24K model has 32 codebooks instead of 9. 2024-04-17 20:59:25 -05:00
mrq
5ff2b4aab5 finally swallowing the Descript-Audio-Codec pill (I guess I'm going to have to regenerate my entire dataset) 2024-04-17 20:39:35 -05:00
mrq
545162195b deprecate sole AR/NAR model by only keeping the AR+NAR (the beauty of no one using this is that I can break compat as much as I want), add tone token for when I classify my dataset with tone/emotion in the future, some other things 2024-04-15 19:54:32 -05:00
mrq
09cda7d3f9 added sampling by speaker group name (might be better to de-emphasize the LibriVox/Audiobooks that are in large numbers, and emphasize the smaller pools), log cleanup 2023-10-16 19:30:38 -05:00
mrq
2bc2d08b09 (need to verify) added modifying model size and config bool to align with VALL-E continuous' methodology 2023-09-01 17:19:34 -05:00
mrq
78378ed1ce overhauled dataloading code to be marginally faster, mostly cleaned up, and can leverage a metadata json to help things out 2023-08-26 19:53:23 -05:00
mrq
22904a8639 more oversights fixed because I've been using a cached dataloader forever now and didn't catch these problems 2023-08-24 10:25:33 -05:00
mrq
4585824cd3 tweaks, including exporting on save/quit 2023-08-23 16:43:03 -05:00
mrq
7b1b82e0e5 inferencing cleanup 2023-08-20 21:36:02 -05:00
mrq
2d1a9f10c0 nightmare of spaghetti that might break compat; mechanism to increase RVQ bins of an existing model without retraining, keeps sampled proms/resps at max RVQ level and trim off excess levels according to what model receives them, some other things I already forgot (I really hope no one else has weights being baked right now) 2023-08-19 15:06:33 -05:00
mrq
77292c42f9 tested the training preparation for tasks ns, sr, and tse (I don't expect it to go well with only 2 RVQ bins) 2023-08-18 23:55:40 -05:00
mrq
bbb0563b3d pseudocode polyfill stub some other flavor of working on adding the tasks 2023-08-18 22:22:13 -05:00
mrq
fb4e816823 oops 2023-08-18 21:11:19 -05:00
mrq
d7deaf6def distributed training works now (hopefully) 2023-08-13 22:07:45 -05:00
mrq
608c1970eb ops 2023-08-03 20:36:19 -05:00
mrq
f6597e2dfe adjustments 2023-08-02 18:36:26 -05:00
mrq
bf8cedc9dd Rewrite init 2023-08-02 21:53:35 +00:00