|
23d402bf01
|
added knowledge distillation in the trainer (sadly it is not agnostic because of the grave mistake of further processing the batch within the forward pass, so subsequent calls do not match......)
|
2024-12-05 23:05:52 -06:00 |
|
|
ef1c17430f
|
skip step on nan loss (ironically I have not had a nan loss after adding this), throw exception with invalid cfg.dataset.sample_type and sample_order combination (because I was tricked by this in my yaml and had inconsistent vram usage)
|
2024-11-01 20:54:53 -05:00 |
|
|
32287710a2
|
moved prints to use logger, edited readme (fused_attn doesnt seem stable for training)
|
2024-08-29 13:27:16 -05:00 |
|
|
75b04686f8
|
added prom-less training / inferencing, some other things
|
2024-07-22 19:36:07 -05:00 |
|
|
1a392b69f6
|
local training backend should be a bit more aware of variable batch sizes, maybe
|
2024-06-28 22:39:05 -05:00 |
|
|
7cfb78fa64
|
enable LoRA for targetted RVQ levels (to experiment with, seems to help)
|
2024-06-17 21:45:03 -05:00 |
|
|
7047fcc6e2
|
actually make deepspeed work with LoRAs
|
2024-06-17 13:55:37 -05:00 |
|
|
726a4b613f
|
naive, rudimentary DeepSpeed support (just live with the LoRA weights living with the original weights, they can be split later)
|
2024-06-17 13:17:24 -05:00 |
|
|
45a39fb79f
|
very rudimentary lora support (no deepspeed support, tested training and saving but not loading yet)
|
2024-06-17 00:09:16 -05:00 |
|
|
4ade2b60ee
|
ugh
|
2024-06-06 21:57:11 -05:00 |
|
|
fcac9503e2
|
cleanup
|
2024-06-06 13:08:02 -05:00 |
|
|
934672252b
|
feverish cleanup
|
2024-06-03 21:28:49 -05:00 |
|
|
856545f8bb
|
nan loss detection (should have added it earlier), loss scaling for local backend + fp16
|
2024-05-11 22:23:29 -05:00 |
|
|
9d97eb5104
|
added FP8 support through NVIDIA/TransformerEngine , added RetNet_HF through syncdoth/RetNet (as an alternative to branch away from torchscale)
|
2024-04-08 20:14:51 -05:00 |
|
|
3da1518ace
|
added Mistral (non-Mixtral) backend, useless optimization when not training, proper adjustment of the LR for Prodigyopt through d_coeff (maybe), recurrent sampling for LLaMA/Mistral/Mixtral backends (again, doesn't actually work)
|
2024-01-31 21:48:36 -06:00 |
|
|
4abd6564d1
|
fixed training stats not loading from exported weights, a bit of a readme cleanup, updated example training yaml
|
2023-09-23 19:59:00 -05:00 |
|
|
e7da1eb90d
|
edge case
|
2023-09-20 19:20:17 -05:00 |
|
|
c0b25541e3
|
restructured some things with the model to remove dead weights
|
2023-09-20 19:10:59 -05:00 |
|
|
8837bc34d7
|
added option to specify parameters to freeze per-model in YAML (because I need to see about committing atrocities with convering an AR into an AR+NAR)
|
2023-09-07 18:19:51 -05:00 |
|
|
57db3ccfa8
|
shuffled VALL-E continuous as a task tts-c instead, logic fixes for it
|
2023-09-02 12:23:40 -05:00 |
|
|
e40c0d34a0
|
somewhat got recurrent forward working (it's as accurate as chunkwise forward: it's not accurate at all), added option to use AMP instead of blanket setting the weight's dtype
|
2023-09-01 20:58:29 -05:00 |
|
|
7f4388e591
|
added total samples processed and tokens processed (len of text tokens + len of target response tokens)
|
2023-08-28 11:02:45 -05:00 |
|
|
87c4bfedba
|
added ability to mark models as disabled for training, and hotloading them for eval/validation (useful if training only one model, or training a model per GPU)
|
2023-08-27 12:26:12 -05:00 |
|
|
2d1a9f10c0
|
nightmare of spaghetti that might break compat; mechanism to increase RVQ bins of an existing model without retraining, keeps sampled proms/resps at max RVQ level and trim off excess levels according to what model receives them, some other things I already forgot (I really hope no one else has weights being baked right now)
|
2023-08-19 15:06:33 -05:00 |
|
|
d89568a96e
|
some fixes for the local framework
|
2023-08-05 03:22:15 +00:00 |
|
|
012f54b7f1
|
another classic commit so i can copy it to another machine to gut out things and use the trainer bits for a side project that I should really get around to working on sooner than later
|
2023-08-04 14:21:30 -05:00 |
|
|
c85101403f
|
big cleanup
|
2023-08-03 20:26:36 -05:00 |
|