|
1a392b69f6
|
local training backend should be a bit more aware of variable batch sizes, maybe
|
2024-06-28 22:39:05 -05:00 |
|
|
7cfb78fa64
|
enable LoRA for targetted RVQ levels (to experiment with, seems to help)
|
2024-06-17 21:45:03 -05:00 |
|
|
7047fcc6e2
|
actually make deepspeed work with LoRAs
|
2024-06-17 13:55:37 -05:00 |
|
|
726a4b613f
|
naive, rudimentary DeepSpeed support (just live with the LoRA weights living with the original weights, they can be split later)
|
2024-06-17 13:17:24 -05:00 |
|
|
45a39fb79f
|
very rudimentary lora support (no deepspeed support, tested training and saving but not loading yet)
|
2024-06-17 00:09:16 -05:00 |
|
|
4ade2b60ee
|
ugh
|
2024-06-06 21:57:11 -05:00 |
|
|
fcac9503e2
|
cleanup
|
2024-06-06 13:08:02 -05:00 |
|
|
934672252b
|
feverish cleanup
|
2024-06-03 21:28:49 -05:00 |
|
|
856545f8bb
|
nan loss detection (should have added it earlier), loss scaling for local backend + fp16
|
2024-05-11 22:23:29 -05:00 |
|
|
9d97eb5104
|
added FP8 support through NVIDIA/TransformerEngine , added RetNet_HF through syncdoth/RetNet (as an alternative to branch away from torchscale)
|
2024-04-08 20:14:51 -05:00 |
|
|
3da1518ace
|
added Mistral (non-Mixtral) backend, useless optimization when not training, proper adjustment of the LR for Prodigyopt through d_coeff (maybe), recurrent sampling for LLaMA/Mistral/Mixtral backends (again, doesn't actually work)
|
2024-01-31 21:48:36 -06:00 |
|
|
4abd6564d1
|
fixed training stats not loading from exported weights, a bit of a readme cleanup, updated example training yaml
|
2023-09-23 19:59:00 -05:00 |
|
|
e7da1eb90d
|
edge case
|
2023-09-20 19:20:17 -05:00 |
|
|
c0b25541e3
|
restructured some things with the model to remove dead weights
|
2023-09-20 19:10:59 -05:00 |
|
|
8837bc34d7
|
added option to specify parameters to freeze per-model in YAML (because I need to see about committing atrocities with convering an AR into an AR+NAR)
|
2023-09-07 18:19:51 -05:00 |
|
|
57db3ccfa8
|
shuffled VALL-E continuous as a task tts-c instead, logic fixes for it
|
2023-09-02 12:23:40 -05:00 |
|
|
e40c0d34a0
|
somewhat got recurrent forward working (it's as accurate as chunkwise forward: it's not accurate at all), added option to use AMP instead of blanket setting the weight's dtype
|
2023-09-01 20:58:29 -05:00 |
|
|
7f4388e591
|
added total samples processed and tokens processed (len of text tokens + len of target response tokens)
|
2023-08-28 11:02:45 -05:00 |
|
|
87c4bfedba
|
added ability to mark models as disabled for training, and hotloading them for eval/validation (useful if training only one model, or training a model per GPU)
|
2023-08-27 12:26:12 -05:00 |
|
|
2d1a9f10c0
|
nightmare of spaghetti that might break compat; mechanism to increase RVQ bins of an existing model without retraining, keeps sampled proms/resps at max RVQ level and trim off excess levels according to what model receives them, some other things I already forgot (I really hope no one else has weights being baked right now)
|
2023-08-19 15:06:33 -05:00 |
|
|
d89568a96e
|
some fixes for the local framework
|
2023-08-05 03:22:15 +00:00 |
|
|
012f54b7f1
|
another classic commit so i can copy it to another machine to gut out things and use the trainer bits for a side project that I should really get around to working on sooner than later
|
2023-08-04 14:21:30 -05:00 |
|
|
c85101403f
|
big cleanup
|
2023-08-03 20:26:36 -05:00 |
|