|
a8ffa88844
|
it slipped my mind that technically DAC can be used at any sample rate, since it models waveforms; make it a config YAML option to allow this behavior
|
2024-04-19 18:36:54 -05:00 |
|
|
8214aa23d7
|
converting over to a different intermediary dataset format
|
2024-04-18 21:24:06 -05:00 |
|
|
4f5c9e518a
|
actually use the passed-through sample rate from encode for DAC because it does its own resampling I guess
|
2024-04-18 13:32:41 -05:00 |
|
|
2e9e6e68f7
|
Forgot I need to use the DAC's 44K model because 24K model has 32 codebooks instead of 9.
|
2024-04-17 20:59:25 -05:00 |
|
|
5ff2b4aab5
|
finally swallowing the Descript-Audio-Codec pill (I guess I'm going to have to regenerate my entire dataset)
|
2024-04-17 20:39:35 -05:00 |
|
|
545162195b
|
deprecate sole AR/NAR model by only keeping the AR+NAR (the beauty of no one using this is that I can break compat as much as I want), add tone token for when I classify my dataset with tone/emotion in the future, some other things
|
2024-04-15 19:54:32 -05:00 |
|
|
09cda7d3f9
|
added sampling by speaker group name (might be better to de-emphasize the LibriVox/Audiobooks that are in large numbers, and emphasize the smaller pools), log cleanup
|
2023-10-16 19:30:38 -05:00 |
|
|
2bc2d08b09
|
(need to verify) added modifying model size and config bool to align with VALL-E continuous' methodology
|
2023-09-01 17:19:34 -05:00 |
|
|
78378ed1ce
|
overhauled dataloading code to be marginally faster, mostly cleaned up, and can leverage a metadata json to help things out
|
2023-08-26 19:53:23 -05:00 |
|
|
22904a8639
|
more oversights fixed because I've been using a cached dataloader forever now and didn't catch these problems
|
2023-08-24 10:25:33 -05:00 |
|
|
4585824cd3
|
tweaks, including exporting on save/quit
|
2023-08-23 16:43:03 -05:00 |
|
|
7b1b82e0e5
|
inferencing cleanup
|
2023-08-20 21:36:02 -05:00 |
|
|
2d1a9f10c0
|
nightmare of spaghetti that might break compat; mechanism to increase RVQ bins of an existing model without retraining, keeps sampled proms/resps at max RVQ level and trim off excess levels according to what model receives them, some other things I already forgot (I really hope no one else has weights being baked right now)
|
2023-08-19 15:06:33 -05:00 |
|
|
77292c42f9
|
tested the training preparation for tasks ns, sr, and tse (I don't expect it to go well with only 2 RVQ bins)
|
2023-08-18 23:55:40 -05:00 |
|
|
bbb0563b3d
|
pseudocode polyfill stub some other flavor of working on adding the tasks
|
2023-08-18 22:22:13 -05:00 |
|
|
fb4e816823
|
oops
|
2023-08-18 21:11:19 -05:00 |
|
|
d7deaf6def
|
distributed training works now (hopefully)
|
2023-08-13 22:07:45 -05:00 |
|
|
f6597e2dfe
|
adjustments
|
2023-08-02 18:36:26 -05:00 |
|
|
bf8cedc9dd
|
Rewrite init
|
2023-08-02 21:53:35 +00:00 |
|