Commit Graph

624 Commits

Author SHA1 Message Date
mrq
dcaf38b359 fixed training tqdm being stubborn 2024-11-23 09:45:23 -06:00
mrq
41d7c30ea5 added much cleaner non-causal mask generation 2024-11-22 19:43:32 -06:00
mrq
c99a74e834 actually generate a causal mask because it seems sometimes it does not actually generate one because it makes assumptions 2024-11-22 18:30:24 -06:00
mrq
ccee5fc11c that was actually all pointless since sdpa always had an attention mask fed to it and does not need is_causal to implicitly generate one 2024-11-22 16:51:50 -06:00
mrq
4aa685e749 what has science done 2024-11-22 16:45:40 -06:00
mrq
147219a5e0 huge oversight in the attention masking......... (i realized I have not been providing a non-causal mask to non-causal tasks) 2024-11-22 13:44:43 -06:00
mrq
24d888c47c temporarily dropping support for xformers because it's breaking when using an attention mask (which i dont remember commenting it out when being passed), default to not use wandb because it's being a pain when doing tests and not actual sessionsS) 2024-11-22 11:29:12 -06:00
mrq
8aafae91fd dont use timeembedding 2024-11-21 23:14:52 -06:00
mrq
2cef97e43f cleanup 2024-11-21 23:08:43 -06:00
mrq
3fc0540f49 m 2024-11-21 15:07:46 -06:00
mrq
6845c447c9 added more harvard sentences to load from a text file 2024-11-21 13:18:11 -06:00
mrq
2a084544e8 moved duration padding for NAR-len to be a scalar instead (since it seems longer utterances need it much more so than shorter utterances) 2024-11-21 13:04:07 -06:00
mrq
6aee08f9c0 moved stuff in the web UI around (un-experimented the max NAR-len steps because its kind of important to adjust this value for better sounding audio / quicker generated audio) 2024-11-20 20:37:33 -06:00
mrq
dfdba3f190 oops 2024-11-20 19:21:03 -06:00
mrq
cd6e9ba2f2 oops 2024-11-20 16:27:51 -06:00
mrq
1a73ac6a20 I cannot believe it's not actually called Wand DB (added wandb logging support since I think it would have been a much better way to look at my metrics) 2024-11-20 16:10:47 -06:00
mrq
67f7bad168 added mixed modality AR+NAR-len to generate a short prefix through the AR, then inference with said prefix through the NAR-len (need to experiment with it more to ensure that the masked off tokens are the only tokens getting updated) 2024-11-20 14:22:12 -06:00
mrq
db64e6cb59 dependency updates (gradio 5.x now works on my machine) 2024-11-20 12:33:01 -06:00
mrq
efeb55e1b7 documentation update 2024-11-19 19:19:34 -06:00
mrq
b1369e7824 better modality selection (pick AR+NAR by default for the ar+nar model, pick NAR-len by default for the nar-len model), lowered default CFG because it makes the AR+NAR output sped up (but can't be too low since it's required for the NAR-len) 2024-11-19 18:51:17 -06:00
mrq
190a917b3e I did it. 2024-11-19 12:24:33 -06:00
mrq
0e621354e7 cleaned up classifier-free guidance logit processing (in order to try and cope with a bad nar-len model) 2024-11-19 10:30:05 -06:00
mrq
5ba80686e1 two weeks of agony concludes 2024-11-18 21:29:28 -06:00
mrq
2b29790173 oops 2024-11-18 14:12:26 -06:00
mrq
4a71981456 normalize sampler index by batch size (if not using batched sampler), add option to cap out utterances for a speaker, some other things 2024-11-18 12:46:50 -06:00
mrq
6cfdf94bf9 swap priority to use nar-len if available, added notes 2024-11-18 09:40:04 -06:00
mrq
069b27570f set option to set training masking ratio (I don't think for tts a fixed masking ratio is beneficial since the magic of the AR+NAR is being able to still reference the prior sequence of tokens for predicting things) 2024-11-17 17:04:07 -06:00
mrq
88d840218d default set cfg strength to 3.0 since the reference model is updated 2024-11-17 10:23:40 -06:00
mrq
a3e1fa3518 ugh 2024-11-17 09:28:33 -06:00
mrq
23fdba0c98 tweaks and changes 2024-11-16 15:49:06 -06:00
mrq
2fbeacfe92 ugh 2024-11-14 22:18:33 -06:00
mrq
39096f8ff3 redid loss calculation to be cleaner, and position ID generation, and other things (I might need to train the NAR-len from scratch and not resume from an existing checkpoint.........) 2024-11-14 22:17:47 -06:00
mrq
ef05c951ff adjust fp16 loss scaling since I fried a model overnight when it hit 8K scale 2024-11-14 09:23:52 -06:00
mrq
e412e98125 ugh 2024-11-14 07:34:22 -06:00
mrq
c00fc18b62 actually use the right embedding for nar-len 2024-11-13 18:04:04 -06:00
mrq
3ea8a610d6 fix STT 2024-11-13 14:27:15 -06:00
mrq
910033343c overhauled how the right resp level / classifier gets picked to avoid cringemath 2024-11-13 13:31:17 -06:00
mrq
269648605e move NAR-len rvq level 0 to separate embedding 2024-11-13 11:38:58 -06:00
mrq
29e45be0b4 tweaks to bucket sampling 2024-11-13 11:09:24 -06:00
mrq
b2eca271a8 ugh 2024-11-13 10:35:44 -06:00
mrq
be83ddabaa better causal-ness for split loss calc, and also do masking for NAR-len for it 2024-11-13 10:17:52 -06:00
mrq
6b76419123 ugh 2024-11-13 09:54:20 -06:00
mrq
ad7cfffc00 NAR-len RVQ-0 was being trained causally............. 2024-11-13 09:43:50 -06:00
mrq
976ee87f6f resume iteration step in tqdm trainer, warn to logger if the sampler state dict was invalidated 2024-11-13 09:09:28 -06:00
mrq
8286aa54c8 do not pass timestep token/embedding since it doesn't seem to matter at all after all, fixed training masking rate to 80% because a paper said so 2024-11-13 09:07:10 -06:00
mrq
caf721c67b set it to zero because it'll make the stop token hide more often than not 2024-11-12 22:30:50 -06:00
mrq
0f2584eba7 new meme sampler PogChamp new meme sampler PogChamp (it sort of helps?) 2024-11-12 22:30:09 -06:00
mrq
663f07038d haha... (do not create a token dropout/noise mask when not training (this sadly didnt fix NAR-len output)) 2024-11-12 16:41:58 -06:00
mrq
b09328069e actually do CFG sampling for base AR+NAR tasks 2024-11-12 13:42:39 -06:00
mrq
2495a7ef67 Fixed STT in the web UI 2024-11-12 12:49:53 -06:00