163 lines
4.5 KiB
C++
163 lines
4.5 KiB
C++
#pragma once
|
|
|
|
#include "llama-vocab.h"
|
|
#include <array>
|
|
|
|
/* Begin cringe so I can access the model's tok_embd */
|
|
// it needs to be copied so the struct layout is exactly as it is under llama.cpp
|
|
#define LLAMA_MAX_LAYERS 512
|
|
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
|
|
|
enum e_model {
|
|
MODEL_UNKNOWN,
|
|
};
|
|
|
|
enum llm_arch {
|
|
LLM_ARCH_UNKNOWN,
|
|
};
|
|
|
|
struct llama_hparams_posnet {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams_convnext {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams {
|
|
bool vocab_only;
|
|
bool rope_finetuned;
|
|
bool use_par_res;
|
|
bool swin_norm;
|
|
|
|
uint32_t n_vocab = 0;
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
uint32_t n_embd;
|
|
uint32_t n_embd_features = 0;
|
|
uint32_t n_layer;
|
|
uint32_t n_rot;
|
|
uint32_t n_swa = 0; // sliding window attention (SWA)
|
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
|
uint32_t n_expert = 0;
|
|
uint32_t n_expert_used = 0;
|
|
uint32_t n_vocab_type = 0; // for BERT-style token types
|
|
uint32_t n_rel_attn_bkts = 0;
|
|
|
|
// for WavTokenizer
|
|
struct llama_hparams_posnet posnet;
|
|
struct llama_hparams_convnext convnext;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
uint32_t n_ff_exp = 0;
|
|
uint32_t n_ff_shexp = 0;
|
|
uint32_t n_expert_shared = 0;
|
|
float expert_weights_scale = 0.0;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
float f_norm_group_eps;
|
|
|
|
uint32_t n_norm_groups;
|
|
|
|
float f_attn_logit_softcapping = 50.0f;
|
|
float f_final_logit_softcapping = 30.0f;
|
|
|
|
// for RWKV
|
|
uint32_t rescale_every_n_layers = 0;
|
|
uint32_t time_mix_extra_dim = 0;
|
|
uint32_t time_decay_extra_dim = 0;
|
|
uint32_t wkv_head_size = 0;
|
|
|
|
float rope_attn_factor = 1.0f;
|
|
float rope_freq_base_train;
|
|
float rope_freq_scale_train;
|
|
uint32_t n_ctx_orig_yarn;
|
|
float rope_yarn_log_mul;
|
|
int rope_sections[4];
|
|
|
|
// for State Space Models
|
|
uint32_t ssm_d_conv = 0;
|
|
uint32_t ssm_d_inner = 0;
|
|
uint32_t ssm_d_state = 0;
|
|
uint32_t ssm_dt_rank = 0;
|
|
bool ssm_dt_b_c_rms = false;
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_logit_scale = 0.0f;
|
|
|
|
// Additional scale factors (Granite/Granite MoE)
|
|
float f_residual_scale = 0.0f;
|
|
float f_embedding_scale = 0.0f;
|
|
float f_attention_scale = 0.0f;
|
|
|
|
bool causal_attn = true;
|
|
bool use_alibi = false;
|
|
bool attn_soft_cap = false;
|
|
|
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
|
};
|
|
|
|
struct llama_model {
|
|
e_model type = MODEL_UNKNOWN;
|
|
llm_arch arch = LLM_ARCH_UNKNOWN;
|
|
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
|
|
|
std::string name = "n/a";
|
|
|
|
llama_hparams hparams = {};
|
|
llama_vocab vocab;
|
|
|
|
struct ggml_tensor * tok_embd = nullptr;
|
|
struct ggml_tensor * type_embd = nullptr;
|
|
struct ggml_tensor * pos_embd = nullptr;
|
|
struct ggml_tensor * tok_norm = nullptr;
|
|
struct ggml_tensor * tok_norm_b = nullptr;
|
|
|
|
struct ggml_tensor * output_norm = nullptr;
|
|
struct ggml_tensor * output_norm_b = nullptr;
|
|
struct ggml_tensor * output = nullptr;
|
|
struct ggml_tensor * output_b = nullptr;
|
|
struct ggml_tensor * output_norm_enc = nullptr;
|
|
|
|
// classifier
|
|
struct ggml_tensor * cls = nullptr;
|
|
struct ggml_tensor * cls_b = nullptr;
|
|
struct ggml_tensor * cls_out = nullptr;
|
|
struct ggml_tensor * cls_out_b = nullptr;
|
|
|
|
struct ggml_tensor * conv1d = nullptr;
|
|
struct ggml_tensor * conv1d_b = nullptr;
|
|
};
|
|
|
|
/* BEGIN VALL-E SPECIFIC HELPERS */
|
|
struct ggml_tensor * llama_get_embedding_weights(struct llama_model * model) {
|
|
return model->tok_embd;
|
|
}
|
|
struct ggml_tensor * llama_get_output_head_tensor(struct llama_model * model ) {
|
|
return model->output;
|
|
}
|
|
void llama_set_output_head(struct llama_model * model, struct ggml_tensor* tensor ) {
|
|
// set the output tensor
|
|
model->output = tensor;
|
|
// required to properly output logits
|
|
*const_cast<uint32_t*>(&model->hparams.n_vocab) = tensor->ne[1];
|
|
}
|
|
/* END VALL-E SPECIFIC HELPERS */
|
|
|
|
/* End cringe code */ |