345 lines
11 KiB
Python
345 lines
11 KiB
Python
from .base import Base, list_to_tensor, Categorical
|
||
from ..config import cfg
|
||
|
||
import torch
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
|
||
import random
|
||
import math
|
||
from einops import rearrange
|
||
from torch import Tensor
|
||
from tqdm import trange
|
||
|
||
class AR_NAR(Base):
|
||
@property
|
||
def causal(self):
|
||
return True
|
||
|
||
@property
|
||
def norm_type(self):
|
||
return "ln" # if self.n_resp_levels == 1 else "adaln"
|
||
|
||
@property
|
||
def arch_type(self) -> str:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.arch_type
|
||
return cfg.models.ar_nar.arch_type
|
||
|
||
@property
|
||
def n_prom_levels(self) -> int:
|
||
return cfg.models.prom_levels
|
||
|
||
@property
|
||
def n_resp_levels(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.resp_levels
|
||
return cfg.models.ar_nar.resp_levels
|
||
|
||
@property
|
||
def n_max_levels(self) -> int:
|
||
return cfg.models.max_levels
|
||
|
||
@property
|
||
def n_tasks(self) -> int:
|
||
return cfg.models.tasks
|
||
|
||
@property
|
||
def recurrent_chunk_size(self) -> int:
|
||
return 0
|
||
|
||
"""
|
||
@property
|
||
def rotary_embedding_base(self) -> float:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.rotary_embedding_base
|
||
return cfg.models.ar_nar.rotary_embedding_base
|
||
"""
|
||
|
||
@property
|
||
def interleave(self) -> bool:
|
||
return False
|
||
|
||
@property
|
||
def monolithic(self) -> bool:
|
||
return True
|
||
|
||
@property
|
||
def version(self) -> int:
|
||
if hasattr(self, "config") and self.config:
|
||
return self.config.version
|
||
return cfg.models.ar_nar.version
|
||
|
||
def _prune(self, l: Tensor):
|
||
indices = (l == self.stop_token).nonzero()
|
||
if len(indices) == 0:
|
||
return l
|
||
return l[: indices.min().item()]
|
||
|
||
@staticmethod
|
||
def _unsqueeze_list(x_list, axis=-1):
|
||
return [x.unsqueeze(dim=axis) for x in x_list]
|
||
|
||
def forward(
|
||
self,
|
||
text_list: list[Tensor],
|
||
proms_list: list[Tensor],
|
||
resps_list: list[Tensor] | None = None,
|
||
max_steps: int = 1000,
|
||
max_levels: int = 7,
|
||
sampling_temperature: float = 0.0,
|
||
sampling_top_k: int = -100,
|
||
sampling_top_p: float = 1.0,
|
||
sampling_repetition_penalty: float = 1.0,
|
||
sampling_repetition_penalty_decay: float = 0.0,
|
||
sampling_length_penalty: float = 0.0,
|
||
sampling_beam_width: int = 0,
|
||
sampling_mirostat_tau: float = 0.0,
|
||
sampling_mirostat_eta: float = 0.1,
|
||
):
|
||
device = text_list[0].device
|
||
batch_size = len(text_list)
|
||
|
||
# is training or NAR
|
||
if resps_list is not None:
|
||
n_levels_set = {r.shape[-1] for r in resps_list}
|
||
n_levels = next(iter(n_levels_set))
|
||
|
||
# is training
|
||
if n_levels == self.n_resp_levels:
|
||
if cfg.models.ar_nar.p_ar_level == "auto" or cfg.models.ar_nar.p_ar_level is None:
|
||
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
|
||
else:
|
||
quant_levels = torch.Tensor([ [ 0 if random.random() < cfg.models.ar_nar.p_ar_level else random.randint(1, self.n_resp_levels) ] for _ in range(batch_size) ])
|
||
|
||
targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target)
|
||
resps_list = [r if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # yes I can just do min(1, l)
|
||
quant_levels.to(device=device)
|
||
|
||
return super().forward(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
targ_list=targ_list,
|
||
quant_levels=quant_levels,
|
||
)
|
||
# is NAR
|
||
prev_list = resps_list
|
||
if max_levels == 0:
|
||
max_levels = self.n_resp_levels
|
||
|
||
while True:
|
||
level = prev_list[0].shape[-1]
|
||
|
||
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
|
||
break
|
||
|
||
quant_levels = torch.full((len(text_list),), level, device=device)
|
||
|
||
logits = super().forward(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=prev_list,
|
||
quant_levels=quant_levels,
|
||
)
|
||
|
||
resps_list = super().sample(
|
||
logits=logits,
|
||
resps_list=prev_list,
|
||
quant_levels=quant_levels,
|
||
|
||
temperature=sampling_temperature,
|
||
top_p=sampling_top_p,
|
||
top_k=sampling_top_k,
|
||
repetition_penalty=sampling_repetition_penalty,
|
||
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
||
#length_penalty=sampling_length_penalty,
|
||
#beam_width=sampling_beam_width,
|
||
#mirostat=mirostat,
|
||
)
|
||
|
||
prev_list = [ torch.cat([rs, r.unsqueeze(-1)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
|
||
|
||
return prev_list
|
||
|
||
# is AR
|
||
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
|
||
stopped = torch.zeros(batch_size, device=device).bool()
|
||
|
||
recurrent_state = {} if cfg.inference.recurrent_forward else None
|
||
mirostat = [
|
||
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
|
||
] * batch_size if sampling_mirostat_tau > 0.0 else None
|
||
|
||
sampling_beam_width_use_logs = True
|
||
scores = [ 1.0 ] * sampling_beam_width
|
||
|
||
if self.interleave:
|
||
max_steps *= self.n_prom_levels
|
||
|
||
# get next in sequence
|
||
for n in trange(max_steps // max(1, self.recurrent_chunk_size)):
|
||
resps_list = self._unsqueeze_list(sequence_list)
|
||
logits = super().forward(
|
||
text_list=text_list,
|
||
proms_list=proms_list,
|
||
resps_list=resps_list,
|
||
|
||
state=recurrent_state
|
||
)
|
||
|
||
r = super().sample(
|
||
logits=logits,
|
||
resps_list=resps_list,
|
||
|
||
temperature=sampling_temperature,
|
||
top_p=sampling_top_p,
|
||
top_k=sampling_top_k,
|
||
repetition_penalty=sampling_repetition_penalty,
|
||
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
||
length_penalty=sampling_length_penalty,
|
||
beam_width=sampling_beam_width,
|
||
|
||
mirostat=mirostat,
|
||
)
|
||
|
||
if mirostat is not None:
|
||
# r is the state
|
||
mirostat = r
|
||
# extract token from state
|
||
r = [ state["token"] for state in mirostat ]
|
||
# we do it here because the sampler will already expand our logits list
|
||
elif sampling_beam_width > 0:
|
||
# expand tuple
|
||
r, s = r
|
||
# first step, expand batch
|
||
if batch_size == 1:
|
||
batch_size *= sampling_beam_width
|
||
text_list = text_list * sampling_beam_width
|
||
proms_list = proms_list * sampling_beam_width
|
||
sequence_list = sequence_list * sampling_beam_width
|
||
stopped = torch.zeros(batch_size, device=device).bool()
|
||
|
||
# update scores
|
||
if sampling_beam_width_use_logs:
|
||
scores = [ (math.log(scores[i]) if scores[i] > 0 else 0) + math.log(score) for i, score in enumerate(s) ]
|
||
else:
|
||
scores = [ scores[i] * score for i, score in enumerate(s) ]
|
||
|
||
# append tokens
|
||
for i, ri in enumerate(r):
|
||
if self.stop_token in ri:
|
||
stopped[i] = True
|
||
sequence_list[i] = torch.cat([sequence_list[i], ri])
|
||
|
||
# stop token found
|
||
stopped |= r == self.stop_token
|
||
if stopped.all().item():
|
||
break
|
||
|
||
# pick the best scoring candidate
|
||
# desu this is always going to be candidate 0
|
||
if sampling_beam_width and len(scores) > 0:
|
||
best_idx, best_score = (0, 0)
|
||
for idx, score in enumerate(scores):
|
||
if best_score > score:
|
||
best_idx, best_score = idx, score
|
||
|
||
sequence_list = [sequence_list[best_idx]]
|
||
|
||
return [self._prune(r) for r in sequence_list]
|
||
|
||
|
||
def example_usage():
|
||
cfg.trainer.backend = "local"
|
||
from functools import partial
|
||
|
||
from einops import repeat
|
||
|
||
from ..emb.qnt import decode_to_file, unload_model
|
||
from ..engines import Engine
|
||
from tqdm import tqdm
|
||
from ..utils import wrapper as ml
|
||
|
||
device = "cuda"
|
||
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
|
||
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
|
||
def tokenize(content, lang_marker="en"):
|
||
split = content.split(" ")
|
||
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
|
||
return torch.tensor([*map(symmap.get, phones)]).to()
|
||
|
||
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
|
||
|
||
text_list = [
|
||
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
|
||
]
|
||
proms_list = [
|
||
qnt[:75*3, :].to(device),
|
||
]
|
||
resps_list = [
|
||
qnt.to(device),
|
||
]
|
||
|
||
text_list = text_list[:1]
|
||
proms_list = proms_list[:1]
|
||
resps_list = resps_list[:1]
|
||
|
||
kwargs = {
|
||
'n_tokens': 1024,
|
||
'd_model': 1024, # 1536
|
||
'n_heads': 16, # 24
|
||
'n_layers': 12, # 32
|
||
}
|
||
|
||
"""
|
||
try:
|
||
kwargs['config'] = cfg.models.ar_nar
|
||
except Exception as e:
|
||
pass
|
||
"""
|
||
|
||
model = AR_NAR(**kwargs).to(device)
|
||
#steps = 500
|
||
#optimizer = ml.Prodigy(model.parameters(), lr=1.0)
|
||
steps = 1000
|
||
optimizer = ml.AdamW(model.parameters(), lr=1.0e-4)
|
||
engine = Engine(model=model, optimizer=optimizer)
|
||
|
||
torch.save( {
|
||
'module': model.state_dict()
|
||
}, "./data/test.pth" )
|
||
|
||
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||
|
||
@torch.inference_mode()
|
||
def sample( name, steps=600 ):
|
||
engine.eval()
|
||
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95, sampling_beam_width=16 )
|
||
|
||
for i, o in enumerate(resps_list):
|
||
_ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
|
||
|
||
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
||
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
|
||
|
||
for i, o in enumerate(resps_list):
|
||
_ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device)
|
||
|
||
unload_model()
|
||
|
||
def train():
|
||
engine.train()
|
||
t = trange(steps)
|
||
for i in t:
|
||
stats = {"step": i}
|
||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||
|
||
tqdm.write(f"{stats}")
|
||
|
||
sample("init", 75)
|
||
train()
|
||
sample("final")
|
||
|
||
if __name__ == "__main__":
|
||
example_usage()
|