161 lines
5.5 KiB
Python
Executable File
161 lines
5.5 KiB
Python
Executable File
import torch
|
|
import torchaudio
|
|
import soundfile
|
|
|
|
from torch import Tensor
|
|
from einops import rearrange
|
|
from pathlib import Path
|
|
|
|
from .emb import g2p, qnt
|
|
from .emb.qnt import trim, trim_random
|
|
from .utils import to_device
|
|
|
|
from .config import cfg
|
|
from .models import get_models
|
|
from .train import load_engines
|
|
from .data import get_phone_symmap, _load_quants
|
|
|
|
class TTS():
|
|
def __init__( self, config=None, ar_ckpt=None, nar_ckpt=None, device=None, amp=None, dtype=None ):
|
|
self.loading = True
|
|
|
|
self.input_sample_rate = 24000
|
|
self.output_sample_rate = 24000
|
|
|
|
if config:
|
|
cfg.load_yaml( config )
|
|
cfg.dataset.use_hdf5 = False # could use cfg.load_hdf5(), but why would it ever need to be loaded for inferencing
|
|
|
|
try:
|
|
cfg.format()
|
|
except Exception as e:
|
|
pass
|
|
|
|
if amp is None:
|
|
amp = cfg.inference.amp
|
|
if dtype is None:
|
|
dtype = cfg.inference.dtype
|
|
if device is None:
|
|
device = cfg.device
|
|
|
|
cfg.mode = "inferencing"
|
|
cfg.device = device
|
|
cfg.trainer.load_state_dict = True
|
|
cfg.trainer.backend = "local"
|
|
cfg.trainer.weight_dtype = dtype
|
|
cfg.inference.weight_dtype = dtype
|
|
|
|
self.device = device
|
|
self.dtype = cfg.inference.dtype
|
|
self.amp = amp
|
|
|
|
self.symmap = None
|
|
if ar_ckpt and nar_ckpt:
|
|
self.ar_ckpt = ar_ckpt
|
|
self.nar_ckpt = nar_ckpt
|
|
|
|
models = get_models(cfg.models.get())
|
|
for name, model in models.items():
|
|
if name.startswith("ar+nar"):
|
|
self.ar = model
|
|
state = torch.load(self.ar_ckpt)
|
|
if "symmap" in state:
|
|
self.symmap = state['symmap']
|
|
if "module" in state:
|
|
state = state['module']
|
|
self.ar.load_state_dict(state)
|
|
self.ar = self.ar.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
self.nar = self.ar
|
|
elif name.startswith("ar"):
|
|
self.ar = model
|
|
state = torch.load(self.ar_ckpt)
|
|
if "symmap" in state:
|
|
self.symmap = state['symmap']
|
|
if "module" in state:
|
|
state = state['module']
|
|
self.ar.load_state_dict(state)
|
|
self.ar = self.ar.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
elif name.startswith("nar"):
|
|
self.nar = model
|
|
state = torch.load(self.nar_ckpt)
|
|
if "symmap" in state:
|
|
self.symmap = state['symmap']
|
|
if "module" in state:
|
|
state = state['module']
|
|
self.nar.load_state_dict(state)
|
|
self.nar = self.nar.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
else:
|
|
self.load_models()
|
|
|
|
if self.symmap is None:
|
|
self.symmap = get_phone_symmap()
|
|
|
|
self.ar.eval()
|
|
self.nar.eval()
|
|
|
|
self.loading = False
|
|
|
|
def load_models( self ):
|
|
engines = load_engines()
|
|
for name, engine in engines.items():
|
|
if name[:6] == "ar+nar":
|
|
self.ar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
self.nar = self.ar
|
|
elif name[:2] == "ar":
|
|
self.ar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
elif name[:3] == "nar":
|
|
self.nar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32)
|
|
|
|
def encode_text( self, text, language="en" ):
|
|
# already a tensor, return it
|
|
if isinstance( text, Tensor ):
|
|
return text
|
|
|
|
content = g2p.encode(text, language=language)
|
|
# ick
|
|
try:
|
|
phones = ["<s>"] + [ " " if not p else p for p in content ] + ["</s>"]
|
|
return torch.tensor([*map(self.symmap.get, phones)])
|
|
except Exception as e:
|
|
pass
|
|
phones = [ " " if not p else p for p in content ]
|
|
return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ])
|
|
|
|
def encode_audio( self, paths, trim_length=0.0 ):
|
|
# already a tensor, return it
|
|
if isinstance( paths, Tensor ):
|
|
return paths
|
|
|
|
# split string into paths
|
|
if isinstance( paths, str ):
|
|
paths = [ Path(p) for p in paths.split(";") ]
|
|
|
|
# merge inputs
|
|
res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths])
|
|
|
|
if trim_length:
|
|
res = trim( res, int( 75 * trim_length ) )
|
|
|
|
return res
|
|
|
|
@torch.inference_mode()
|
|
def inference( self, text, references, max_ar_steps=6 * 75, max_nar_levels=7, input_prompt_length=0.0, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ):
|
|
if out_path is None:
|
|
out_path = f"./data/{cfg.start_time}.wav"
|
|
|
|
prom = self.encode_audio( references, trim_length=input_prompt_length )
|
|
phns = self.encode_text( text )
|
|
|
|
prom = to_device(prom, self.device).to(torch.int16)
|
|
phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16)
|
|
|
|
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
|
|
resps_list = self.ar(text_list=[phns], proms_list=[prom], max_steps=max_ar_steps, sampling_temperature=ar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, sampling_length_penalty=length_penalty)
|
|
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
|
resps_list = self.nar(text_list=[phns], proms_list=[prom], resps_list=resps_list, max_levels=max_nar_levels, sampling_temperature=nar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, sampling_length_penalty=length_penalty)
|
|
|
|
wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device)
|
|
|
|
return (wav, sr)
|
|
|