vall-e/vall_e/export.py

349 lines
13 KiB
Python
Executable File

import argparse
import torch
import torch.nn
from .data import get_phone_symmap
from .engines import load_engines
from .config import cfg
from .models.lora import lora_get_state_dict
from .utils.io import torch_save, torch_load
# stitches embeddings into one embedding & classifier => lm_head, for use in a HF compatible weight
# *will* require retraining because the classifier is in one contiguous space, and proms are NOT summed
@torch.no_grad()
def convert_to_hf( state_dict, config = None, save_path = None ):
# to-do: infer all of this from the existing state_dict, should be easy by checking shape
model_dim = 1024
n_text_tokens = 256
n_audio_tokens = 1024
n_resp_levels = 8
n_len_tokens = 11
n_lang_tokens = 4
n_task_tokens = 9
# the new tokenizer to use
tokenizer_append = {}
l_tokens = [
n_text_tokens, # text
n_audio_tokens * n_resp_levels, # prom
(n_audio_tokens + 1) * 2, # resp: AR + NAR-len (with stop/mask)
(n_audio_tokens) * (n_resp_levels - 1), # NAR
n_resp_levels, # RVQ level
n_len_tokens, # len tokens
1, # separator
n_lang_tokens, # langs
n_task_tokens, # tasks
]
n_tokens = sum(l_tokens)
lang_map = [
"en",
"ja",
"de",
"fr",
]
task_map = [
"tts",
"tts-c",
"ns",
"sr",
"tse",
"soe",
"mask",
"eoe",
"stt",
]
embedding = torch.nn.Embedding( n_tokens, model_dim )
classifier = torch.nn.Linear( model_dim, n_tokens )
#embedding.weight.requires_grad = False
#classifier.weight.requires_grad = False
#classifier.bias.requires_grad = False
# inject text tokens
token_start = 0
token_end = l_tokens[0]
embedding.weight[token_start:token_end] = state_dict['module']['text_emb.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.9.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.9.bias']
# tokenizer already has these tokens
# inject prom tokens
token_start = token_end
token_end += l_tokens[1]
for l in range(n_resp_levels):
start = token_start + (l*n_resp_levels)
end = start + n_audio_tokens
embedding.weight[start:end] = state_dict['module'][f'proms_emb.embeddings.{l}.weight']
# there's no corresponding classifier
#classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight']
#classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<P:{l}:{t}>'] = start + t
# inject AR
token_start = token_end
token_end += l_tokens[2] // 2
embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.0.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.0.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.0.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<AR:0:0:{t}>'] = token_start + t
tokenizer_append[f'<AR:0:0:STOP>'] = token_start + 1024
# inject NAR-len
token_start = token_end
token_end += l_tokens[2] // 2
embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.8.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.8.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.8.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<NAR:0:0:{t}>'] = token_start + t
tokenizer_append[f'<NAR:0:0:STOP>'] = token_start + 1024
# inject NAR
token_start = token_end
token_end += l_tokens[3]
for l in range(1, n_resp_levels):
start = token_start + ((l-1)*n_resp_levels)
end = start + n_audio_tokens
embedding.weight[start:end] = state_dict['module'][f'resps_emb.embeddings.{l}.weight']
classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight']
classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<NAR:{l-1}:{l}:{t}>'] = start + t
# inject RVQ level
token_start = token_end
token_end += l_tokens[4]
embedding.weight[token_start:token_end] = state_dict['module'][f'rvq_l_emb.weight']
# there is no corresponding classifier
for l in range(n_resp_levels):
tokenizer_append[f'<RVQ:{l}>'] = token_start + l
# inject len
token_start = token_end
token_end += l_tokens[5]
embedding.weight[token_start:token_end] = state_dict['module'][f'len_emb.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.10.weight'][0:n_len_tokens] # erroneously sized as 256
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.10.bias'][0:n_len_tokens] # erroneously sized as 256
for t in range(n_len_tokens):
tokenizer_append[f'<len:{t}>'] = token_start + t
# inject sep
token_start = token_end
token_end += l_tokens[6]
embedding.weight[token_start:token_end] = state_dict['module']['sep']
tokenizer_append['<sep>'] = token_start
# there is no corresponding classifier
# inject langs
token_start = token_end
token_end += l_tokens[7]
embedding.weight[token_start:token_end] = state_dict['module']['langs_emb.weight']
for l in range(n_lang_tokens):
lang = lang_map[l]
tokenizer_append[f'<lang:{lang}>'] = token_start + l
# there is no corresponding classifier
# inject tasks
token_start = token_end
token_end += l_tokens[8]
embedding.weight[token_start:token_end] = state_dict['module']['tasks_emb.weight']
for l in range(n_task_tokens):
task = task_map[l]
tokenizer_append[f'<task:{task}>'] = token_start + l
# there is no corresponding classifier
model_dict = {}
# filter out the underlying model weights and extract them
for k in state_dict['module'].keys():
if not k.startswith('model.'):
continue
model_dict[k] = state_dict['module'][k].clone()
del state_dict['module']
embedding_dict = embedding.state_dict()
classifier_dict = classifier.state_dict()
model_dict['model.embed_tokens.weight'] = embedding_dict['weight']
model_dict['lm_head.weight'] = classifier_dict['weight']
model_dict['lm_head.bias'] = classifier_dict['bias']
state_dict['module'] = model_dict
state_dict['vocab'] = tokenizer_append
return state_dict
"""
n_tokens = 256 + (1024 * 8) + (1024 * 8) + 1
token_dim = 1024
embedding = torch.nn.Embedding(n_tokens, token_dim)
embedding.weight.requires_grad = False
def move_value(k):
v = state_dict['module'][k]
del state_dict['module'][k]
return v
separator = move_value('sep')
out_proj = move_value('classifier.weight')
text_emb = move_value('text_emb.weight')
langs_emb = move_value('langs_emb.weight')
tasks_emb = move_value('tasks_emb.weight')
tones_emb = move_value('tones_emb.weight')
proms_emb_weight = [ move_value(f'proms_emb.weight.{i}').item() for i in range(8) ] if "proms_emb.weight.0" in state_dict['module'] else [ [ 1 for _ in range(8) ] ]
resps_emb_weight = [ move_value(f'resps_emb.weight.{i}').item() for i in range(8) ] if "resps_emb.weight.0" in state_dict['module'] else [ [ 1 for _ in range(8) ] ]
proms_emb = [ move_value(f'proms_emb.embeddings.{i}.weight') for i in range(8) ]
resps_emb = [ move_value(f'resps_emb.embeddings.{i}.weight') for i in range(8) ]
start = 0
for i in range(256):
embedding.weight[start + i] = text_emb[i]
start = 256
for layer in range(8):
for i in range(1024):
offset = start + 1024 * layer
embedding.weight[i + offset] = proms_emb[layer][i] * proms_emb_weight[layer]
start = 256 + 1024 * 8
for layer in range(8):
for i in range(1024):
offset = start + 1024 * layer
embedding.weight[i + offset] = resps_emb[layer][i] * proms_emb_weight[layer]
state_dict['module']['model.embed_tokens.weight'] = embedding.state_dict()
# to-do: properly recreate the output head weights or something
state_dict['module']['lm_head.weight'] = out_proj
del state_dict['module']['classifier.weight']
del state_dict['module']['classifier.bias']
return state_dict
"""
# yanks a LoRA from the training checkpoint
def extract_lora( state_dict, config = None, save_path = None, dtype = None ):
if dtype is None:
dtype = cfg.inference.dtype
format = save_path.suffix[1:]
lora = state_dict["lora"] if "lora" in state_dict else None
# should always be included, but just in case
if lora is None and "module" in state_dict:
lora, module = lora_get_state_dict( state_dict["module"], split = True )
state_dict["module"] = module
if "lora" in state_dict:
state_dict["lora"] = None
# should raise an exception since there's nothing to extract, or at least a warning
if not lora:
return state_dict
# save lora specifically
# should probably export other attributes, similar to what SD LoRAs do
save_path = save_path.parent / f"lora.{format}"
torch_save( {
"module": lora,
"config": cfg.lora.__dict__ if cfg.lora is not None else None,
}, save_path )
return state_dict
# copies a single classifier head into multiple classifier heads per RVQ level
def split_classifier_heads( state_dict, config = cfg.model, save_path = None, dtype = None):
levels = config.max_levels
if "classifier.weight" not in state_dict['module']:
return state_dict
# copy to new AudioClassifier
for i in range(levels):
tokens = 1025 if i == 0 else 1024
# trim per RVQ level (since level 0 has a stop token)
state_dict['module'][f'classifiers.proj.{i}.weight'] = state_dict['module']['classifier.weight'][:tokens, :].clone()
state_dict['module'][f'classifiers.proj.{i}.bias'] = state_dict['module']['classifier.bias'][:tokens].clone()
# delete old weights
del state_dict['module']['classifier.weight']
del state_dict['module']['classifier.bias']
return state_dict
# converts a normal LLaMA model to a MoE model, as best as I can
def moe_ify( state_dict, config = cfg.model, save_path = None, dtype = None ):
# to-do: find a good way to pass in requested experts
experts = 8
for layer in range( config.layers ):
#state_dict[f'model.layers.{layer}.block_sparse_moe.gate.weight'] = torch.randn((config.dim, experts))
for expert in range( experts ):
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w1.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight'].clone()
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w2.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight'].clone()
state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w3.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight'].clone()
del state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight']
del state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight']
del state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight']
return state_dict
def main():
parser = argparse.ArgumentParser("Save trained model to path.")
parser.add_argument("--module-only", action='store_true')
parser.add_argument("--hf", action='store_true', default=None) # convert to HF-style
parser.add_argument("--export-lora", action='store_true', default=None) # exports LoRA
parser.add_argument("--split-classifiers", action='store_true', default=None) # splits classifier heads
parser.add_argument("--moe-ify", action='store_true', default=None) # splits classifier heads
parser.add_argument("--experts", type=int, default=8) # set target dtype to export to
parser.add_argument("--dtype", type=str, default="auto") # set target dtype to export to
parser.add_argument("--format", type=str, default=cfg.weights_format) # set target format to export weights under
args, unknown = parser.parse_known_args()
if args.format.lower() not in ["sft", "safetensors", "pt", "pth"]:
raise Exception(f"Unknown requested format: {args.format}")
if args.module_only:
cfg.trainer.load_module_only = True
if args.hf and args.export_lora:
raise Exception("Requesting more than one callback")
if args.dtype != "auto":
cfg.trainer.weight_dtype = args.dtype
# necessary to ensure we are actually exporting the weights right
cfg.inference.backend = cfg.trainer.backend
engines = load_engines(training=False) # to ignore loading optimizer state
callback = None
if args.hf:
callback = convert_to_hf
elif args.export_lora:
callback = extract_lora
elif args.split_classifiers:
callback = split_classifier_heads
elif args.moe_ify:
callback = moe_ify
# set it here after the model loads to not influence which model loads
cfg.model.experts = args.experts
for name, engine in engines.items():
engine.module.config.experts = args.experts
engine.hyper_config.experts = args.experts
engines.export(userdata={"symmap": get_phone_symmap()}, callback=callback, format=args.format)
if __name__ == "__main__":
main()