vall-e/vall_e/models/ar_nar.py

1201 lines
40 KiB
Python

"""
# an AR + NAR model that handles:
* inferencing the primary RVQ level in an autoregressive manner (AR)
* inferencing the remaining RVQ levels in parallel (NAR)
This model can fully handle being trained as a unified model (AR + NAR) or separate models (AR | NAR).
It's recommended to train as a unified model, then "distill" knowledge of each tasks separately, just in case.
"""
from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
import time
from einops import rearrange
from torch import Tensor
from tqdm import trange, tqdm
import logging
_logger = logging.getLogger(__name__)
from ..emb.qnt import trim, encode_as_embedding, get_silence
from ..utils import get_devices, setup_logging, timer, clamp, convert_kwargs
from .lora import enable_lora
from ..samplers import cfg_logits
text_task = [ "stt", "phn", "un-phn" ]
class AR_NAR(Base):
# yikes
def forward_super(self, *args, **kwargs):
return super().forward(*args, **kwargs)
# parse inputs for training
# a lot of this could be delegated back to the dataloader, but it's just easier to keep the task of the dataloader to provide sufficient data, and the model to process the data for training
def forward_train(
self,
task_list: list[Tensor] | None = None,
text_list: list[Tensor] | None = None,
proms_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
raw_text_list: list[Tensor] | None = None,
):
# deduce batch_size
if text_list:
device = text_list[0].device
batch_size = len(text_list)
elif raw_text_list:
device = raw_text_list[0].device
batch_size = len(raw_text_list)
elif proms_list:
device = proms_list[0].device
batch_size = len(proms_list)
elif resps_list:
device = resps_list[0].device
batch_size = len(resps_list)
# specifies how to sample probabilities of which RVQ levels to train against
rvq_levels_p = self.config.experimental.rvq_levels_p if self.config is not None else "equal"
# determines which RVQ level to target per batch
quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ]
# rate to perform token dropout errors
token_dropout_error = self.config.experimental.token_dropout_error
# RVQ levels to apply token dropout on
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels
# RVQ levels to apply masking training on
masking_train_rvq_levels = self.config.experimental.masking_train_rvq_levels
# CFG
cfg_text_dropout_p = self.config.experimental.cfg_text_dropout_p if self.config is not None else 0.0
cfg_cond_dropout_p = self.config.experimental.cfg_cond_dropout_p if self.config is not None else 0.0
cfg_prom_dropout_p = self.config.experimental.cfg_prom_dropout_p if self.config is not None else 0.0
use_raw_text_p = self.config.experimental.use_raw_text_p if self.config is not None else 0.0
# rate to train RVQ level AR-ly or NAR-ly
masking_train_p = self.config.experimental.masking_train_p if self.config is not None else 0.5
masking_ratio = self.config.experimental.masking_ratio if self.config is not None else "random"
# force set mask training
if "len" not in self.capabilities:
masking_train_p = 0.0
elif "ar" not in self.capabilities:
masking_train_p = 1.0
# implicitly set it to all levels
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [0, self.resp_levels - 1]
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [0, 0]
# allow passing a specific distribution of RVQ levels
rvq_levels_p = rvq_levels_p if isinstance(rvq_levels_p, list) else []
if not rvq_levels_p:
lo, hi = quant_level_range[0], quant_level_range[1] + 1
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
if rvq_levels_p == "equal":
rvq_levels_p = [ i for i in range( lo, hi ) ]
else:
# yuck
rvq_levels_p = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], [])
# input RVQ levels
quant_levels = [ random.choice( rvq_levels_p ) for i in range(batch_size) ]
# timestep levels (for TTS NAR)
timesteps = [ None for _ in range(batch_size) ]
for i, task in enumerate( task_list ):
lo, hi = masking_train_rvq_levels[0], masking_train_rvq_levels[1]
if task in text_task:
quant_levels[i] = 0 # self.n_resp_levels - 1
elif lo <= quant_levels[i] and quant_levels[i] <= hi and random.random() < masking_train_p:
# to-do: prioritize lower timesteps over later timesteps
# ...except that the masking rate is still tied to the cosine scheduling, which does this already
#r = random.random()
#p = math.acos(r) / (math.pi * 0.5)
#timesteps[i] = 1.0 - clamp(p, 0.0, 1.0)
timesteps[i] = random.random()
# instead make it between [0.2, 0.8]
if masking_ratio == "rand":
timesteps[i] = (timesteps[i] * 0.6) + 0.2
# trim resps to only contain all levels below the target level
resps_list = [r if t in text_task else r[..., :l+1] for r, l, t in zip(resps_list, quant_levels, task_list)]
# tensor to cat for RVQ level 0
text_stop_sequence = torch.tensor([2], device=device, dtype=torch.int16)
text_start_stop_sequence = torch.tensor([1, 2], device=device, dtype=torch.int16)
audio_stop_sequence = torch.tensor([[self.stop_token]], device=device, dtype=torch.int16)
# final validations and stuff
for i, quant_level, resps, proms, task in zip(range(batch_size), quant_levels, resps_list, proms_list, task_list):
# cap quant_level if it exceeds its corresponding resp/prom
# this was needed for when my DAC-encoded audio was erroneously trimmed to 8 RVQ levels instead of 9
if quant_level >= resps.shape[-1]:
quant_levels[i] = resps.shape[-1] - 1
# proms could be a Tensor, list[Tensor], or None
if isinstance( proms, torch.Tensor ):
if quant_level >= proms.shape[-1]:
quant_levels[i] = proms.shape[-1] - 1
elif isinstance( proms, list ):
for j, prom in enumerate( proms ):
if not isinstance( prom, torch.Tensor ):
continue
if quant_level >= prom.shape[-1]:
quant_levels[i] = prom.shape[-1] - 1
# apply token dropout error compensation
if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
steps = resps.shape[0]
for l in range( quant_level ):
for t in range( steps ):
token = resps[t, l].item()
if random.random() < token_dropout_error:
offset = 1 * ( 1 if random.random() < 0.5 else -1 )
resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1
# only apply stop token for RVQ level 0
if quant_level <= 0 and timesteps[i] is None:
# append stop tokens for AR
if task not in text_task:
resps_list[i] = torch.cat([ resps, audio_stop_sequence ])
if task == "len":
quant_levels[i] = 0
# apply CFG (should probably only apply to NAR quant level 0)
if task not in text_task + ["len"]:
drop_text = False
drop_audio = False
swap_text = False
if random.random() < cfg_prom_dropout_p:
drop_audio = True
if random.random() < cfg_cond_dropout_p:
drop_audio = True
drop_text = True
if random.random() < use_raw_text_p and raw_text_list[i] is not None:
swap_text = True
if drop_text:
text_list[i] = text_start_stop_sequence
if drop_audio:
proms_list[i] = None
if swap_text and not drop_text:
text_list[i] = None
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
task_list=task_list,
raw_text_list=raw_text_list,
time_list=timesteps,
quant_levels=quant_levels,
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
def forward_nar_masked(
self,
task_list: list[Tensor] | None = None,
text_list: list[Tensor] | None = None,
proms_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
raw_text_list: list[Tensor] | None = None,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
device = text_list[0].device
batch_size = len(text_list)
level = 0
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora )
"""
def log(t, eps=1e-10):
return torch.log(t + eps)
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=1.0, dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
"""
# convert (N)AR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" )
min_length = sampling_kwargs.pop("min_duration", 1)
max_length = sampling_kwargs.pop("max_duration", 500)
max_steps = sampling_kwargs.get("max_steps", 25)
refine_on_stop = sampling_kwargs.get("refine_on_stop", False)
entropix_sampling = sampling_kwargs.get("entropix_sampling", False)
annealed_sampling = sampling_kwargs.get("annealed_sampling", True)
# greedy sampling is very, very much preferred, but using greedy logit scores later helps enough
temperature = sampling_kwargs.pop("temperature", 0.0)
minimum_cfg_strength = sampling_kwargs.get("minimum_cfg_strength", 2.5)
# this really helps keep audio coherent so far
cfg_strength = sampling_kwargs.get("cfg_strength", minimum_cfg_strength)
cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.75)
start_noise = sampling_kwargs.get("denoise_start", 0.0)
end_noise = sampling_kwargs.get("denoise_end", 1.0)
remasking = sampling_kwargs.get("remasking", True)
max_steps = math.floor(max_steps * (end_noise - start_noise))
# to specify the initial mask used
vc_list = sampling_kwargs.pop("vc_list", None)
vc_threshold = sampling_kwargs.pop("vc_threshold", 0.25)
vc_mask_p = sampling_kwargs.pop("vc_mask_p", 0.25)
if vc_list is not None:
vc_list = [ x if x.dim() == 1 else x[:, 0] for x in vc_list ]
len_list = [ x.shape[0] for x in vc_list ]
len_list = [ clamp(l, min_length, max_length) for l in len_list ]
# force set CFG because too low / no CFG causes issues
original_cfg_strength = cfg_strength
cfg_strength = max( cfg_strength, minimum_cfg_strength )
prefix_context = sampling_kwargs.get("prefix_context", None)
# we can get away with just providing a list of resps to prefix later, and it will magically get removed anyways when masking and scoring
if prefix_context is not None:
text_list = [ torch.concat([prefix[:-1], text[1:]]) for prefix, text in zip( prefix_context[0], text_list ) ]
prefix_resps_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in prefix_context[1] ]
# if we're denoising from an existing sequence
if start_noise > 0.0 and resps_list is not None:
# flatten if needed
resps_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in resps_list ]
# gen masking ratio
noise_p = math.cos( start_noise * math.pi * 0.5 )
# generate scoring mask (because the above mask will get masked off per the scores, so we do not need to mask beforehand)
scores = [ torch.tensor( [ 1.0 if random.random() < noise_p else 0.0 for _ in range( seq_len ) ], dtype=torch.float32, device=device ) for seq_len in len_list ]
else:
# fill with masked tokens (even though they get masked anyways)
resps_list = [ torch.ones((seq_len,), dtype=torch.int16, device=device) * self.stop_token for seq_len in len_list ]
# fill scores
scores = [ torch.ones((seq_len,), dtype=torch.float32, device=device) for seq_len in len_list ]
quant_levels = [ level for _ in range(batch_size) ]
null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ]
null_prom = [ None for _ in range(batch_size) ]
iterator = tqdm(torch.linspace(start_noise, end_noise, max_steps), desc="NAR Masked", disable=disable_tqdm)
for timestep in iterator:
# update previous list of tokens
prev_list = resps_list
# ramp down over time
annealing = 1.0 - timestep
# get noise level, per cosine scheduling
noise_p = math.cos( timestep * math.pi * 0.5 )
# proportion of tokens to remask
remask_p = 1.0 / (max_steps * 2) if remasking else 0
# pick the worst scoring tokens to mask off
masked_indices = [ score.topk( clamp( int( noise_p * seq_len + remask_p * seq_len ), 1, seq_len), dim=-1 ).indices for score, seq_len in zip(scores, len_list) ]
# normal masking
if vc_list is None or timestep >= vc_threshold:
# mask off inputs
resps_list = [ resp.scatter(0, indices, self.stop_token) for resp, indices in zip( resps_list, masked_indices ) ]
# boolean mask
is_masked = [ resps == self.stop_token for resps in resps_list ]
else:
# mask off a random portion of the target
rand_mask_list = [ torch.rand(mask.shape).to(device=device) < vc_mask_p for mask in vc_list ]
half_mask_list = [ torch.where( rand_mask, self.stop_token, mask.clone() ) for mask, rand_mask in zip( vc_list, rand_mask_list ) ]
# always set the last end as masked off because it causes issues
for i, mask in enumerate(half_mask_list):
half_mask_list[i][-75:] = self.stop_token
#
# mask off inputs per mask
resps_list = [ resp.scatter(0, indices, mask) for resp, indices, mask in zip( resps_list, masked_indices, half_mask_list ) ]
# boolean mask
is_masked = [ resps == mask for resps, mask in zip( resps_list, half_mask_list ) ]
# timestep inputs
time_list = [ timestep for _ in range(batch_size) ]
sampling_temperature = temperature * annealing if annealed_sampling else temperature
sampling_cfg = cfg_strength * timestep if annealed_sampling else cfg_strength
# avoid useless CFG sampling
"""
if sampling_cfg < minimum_cfg_strength * 0.5:
sampling_cfg = 0
"""
if prefix_context is not None:
input_resps_list = [ torch.concat( [ prefix, resps ] ) for prefix, resps in zip( prefix_resps_list, resps_list ) ]
# originally requested no CFG, safe to ignore if we have a prefix
if original_cfg_strength < minimum_cfg_strength:
sampling_cfg = original_cfg_strength * timestep if annealed_sampling else original_cfg_strength
else:
input_resps_list = resps_list
# setup inputs
inputs = super().inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=input_resps_list,
lang_list=lang_list,
tone_list=tone_list,
time_list=time_list,
quant_levels=quant_levels,
)
output = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
logits = output.logits
if cfg_strength > 0:
null_inputs = super().inputs(
text_list=null_text,
proms_list=null_prom,
resps_list=input_resps_list,
lang_list=lang_list,
tone_list=tone_list,
time_list=time_list,
quant_levels=quant_levels,
)
null_output = super().forward(
inputs=null_inputs,
quant_levels=quant_levels,
)
logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ l for l in len_list ] )
# sample with sampler settings
filtered_sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
**sampling_kwargs,
)
# retrieves unfiltered logits
unfiltered_sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=0.0,
**sampling_kwargs,
)
# get sampled tokens
sampled_ids = filtered_sampled.ids
# keep unmasked tokens
resps_list = [ torch.where( masked, input_ids, resps ).to(torch.int16) for masked, input_ids, resps in zip( is_masked, sampled_ids, resps_list ) ]
# get probability scores
scores = [
# conjugate to have worse scoring tokens picked for topk
1.0 -
# only keep scores of tokens we are predicting (and ignore the tokens previously finalized)
torch.where( masked, torch.tensor([score for index, score in enumerate(scores)], device=device), torch.ones(masked.shape, device=device) )
# use unmodified logit scores for this, as it offers better stability
for scores, masked in zip( unfiltered_sampled.scores, is_masked )
]
return resps_list
def forward_nar(
self,
task_list: list[Tensor] | None = None,
text_list: list[Tensor] | None = None,
proms_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
raw_text_list: list[Tensor] | None = None,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
# inference NAR level 0
if len_list is not None:
resps_list = self.forward_nar_masked(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
task_list=task_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
**sampling_kwargs,
)
# deduce batch_size
if text_list:
device = text_list[0].device
batch_size = len(text_list)
elif raw_text_list:
device = raw_text_list[0].device
batch_size = len(raw_text_list)
elif proms_list:
device = proms_list[0].device
batch_size = len(proms_list)
elif resps_list:
device = resps_list[0].device
batch_size = len(resps_list)
# convert NAR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "nar_" )
max_levels = sampling_kwargs.get("max_levels", 0)
cfg_strength = sampling_kwargs.get("cfg_strength", 0.0)
cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.7)
if max_levels == 0:
max_levels = self.n_max_levels - 1
# expand if given a raw 1D tensor
for i, resp in enumerate(resps_list):
if resp.dim() == 1:
resps_list[i] = resp.unsqueeze(-1)
prev_list = resps_list
null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ]
null_prom = [ None for _ in range(batch_size) ]
iterator = trange( max_levels, desc="NAR", disable=disable_tqdm )
for n in iterator:
level = prev_list[0].shape[-1]
if level >= max_levels + 1:
iterator.close()
break
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora )
quant_levels = [ level for _ in range(batch_size) ]
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
output = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
logits, state = output.logits, output.state
if cfg_strength > 0:
null_inputs = super().inputs(
text_list=null_text,
proms_list=null_prom,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
null_output = super().forward(
inputs=null_inputs,
quant_levels=quant_levels,
)
logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ resp.shape[0] for resp in resps_list ] )
sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
**(sampling_kwargs),
)
resps_list = sampled.ids
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device=device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
def forward_ar(
self,
task_list: list[Tensor],
text_list: list[Tensor] | None = None,
raw_text_list: list[Tensor] | None = None,
proms_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
# deduce batch_size
if text_list:
device = text_list[0].device
batch_size = len(text_list)
elif raw_text_list:
device = raw_text_list[0].device
batch_size = len(raw_text_list)
elif proms_list:
device = proms_list[0].device
batch_size = len(proms_list)
elif resps_list:
device = resps_list[0].device
batch_size = len(resps_list)
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( 0 ) if use_lora is None else use_lora )
# convert AR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" )
temperature = sampling_kwargs.get("temperature", 1.0)
cfg_strength = sampling_kwargs.get("cfg_strength", 0.0)
cfg_rescale = sampling_kwargs.pop("cfg_rescale", 0.7)
min_temperature = sampling_kwargs.get("min_temperature", -1.0)
max_duration = sampling_kwargs.get("max_duration", 500)
beam_width = sampling_kwargs.get("beam_width", 0)
entropix_sampling = sampling_kwargs.get("entropix_sampling", False)
refine_on_stop = sampling_kwargs.get("refine_on_stop", False)
input_prompt_prefix = sampling_kwargs.get("input_prompt_prefix", False)
layer_skip = sampling_kwargs.get("layer_skip", False)
prefix_silence = sampling_kwargs.get("prefix_silence", 0.0)
mirostat_tau = sampling_kwargs.get("mirostat_tau", 0.0)
mirostat_eta = sampling_kwargs.get("mirostat_eta", 0.0)
# inference len
if task_list is not None and task_list[0] == "len":
sequence_list = [ torch.tensor([0], device=device,dtype=torch.int16) for _ in range(batch_size) ]
stopped = torch.zeros(batch_size, device=device).bool()
stop_token = 10
task_list = [ "len" for _ in range(batch_size) ]
quant_levels = [ 0 for _ in range( max( batch_size, beam_width ) ) ]
iterator = trange(10, desc="AR", disable=disable_tqdm)
for n in iterator:
len_list = sequence_list
inputs = self.inputs(
task_list=task_list,
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
raw_text_list=raw_text_list,
quant_levels=quant_levels,
)
output = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
logits = output.logits
r = [ logit[-1:].argmax(dim=1) for logit in logits ]
# sanitize
for i, token in enumerate(r):
if token > stop_token:
r[i][0] = stop_token
# append tokens
for i, ri in enumerate(r):
if stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == stop_token
if stopped.all().item():
iterator.close()
break
# convert tokens into int
return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ]
start_slice = [ 0 for _ in range(batch_size) ]
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in range(batch_size) ]
stopped = torch.zeros(batch_size, device=device).bool()
audio_stop_token = self.stop_token
text_stop_token = 2
state = None
mirostat = [
{"n": 1024, "tau": mirostat_tau, "eta": mirostat_eta, "max_surprise": mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if mirostat_tau > 0.0 else None
scores = [ 1.0 ] * beam_width
metrics = []
"""
sampling_layer_skip_variables = {} if sampling_layer_skip else None
if sampling_layer_skip:
if sampling_layer_skip_entropy_threshold >= 0:
sampling_layer_skip_variables["entropy_threshold"] = sampling_layer_skip_entropy_threshold
if sampling_layer_skip_varentropy_threshold >= 0:
sampling_layer_skip_variables["varentropy_threshold"] = sampling_layer_skip_varentropy_threshold
if sampling_layer_skip_exit_layer >= 0:
sampling_layer_skip_variables["max_layer"] = sampling_layer_skip_exit_layer
"""
for i, sequence in enumerate( sequence_list ):
# add <bos> to text for STT
if task_list[i] in text_task:
start_slice[i] = 1
sequence_list[i] = torch.cat([sequence_list[i], torch.tensor([1], dtype=torch.int16, device=device)])
# treat input prompt as initial resp (by prefixing with the prompt instead)
elif input_prompt_prefix:
start_slice[i] = proms_list[i].shape[0]
sequence_list[i], proms_list[i] = proms_list[i][:, 0], sequence_list[i]
elif prefix_silence > 0:
sequence_list[i] = get_silence(prefix_silence, device=sequence_list[i].device)
sequence_list[i] = sequence_list[i][:, 0]
# start_slice[i] = sequence_list[i].shape[0]
# prefixed context provided
prefix_context = sampling_kwargs.get("prefix_context", None)
if prefix_context is not None:
prefix_text, prefix_resps, _ = prefix_context
# to-do: check if we actually need to drop the middle "<eos><bos>"
text_list = [ torch.concat([prefix[:-1], text[1:]]) for prefix, text in zip( prefix_text, text_list ) ]
# feeding this into the NAR-len should automatically handle things
sequence_list = [ resps if resps.dim() == 1 else resps[:, 0] for resps in prefix_resps ]
null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ]
null_prom = [ None for _ in range(batch_size) ]
# get next in sequence
iterator = trange(max_duration // max(1, self.causal_size), desc="AR", disable=disable_tqdm)
for n in iterator:
if batch_size == 1 and task_list[0] in ["phn", "un-phn"]:
text_list = [ sequence_list[i] if task in ["phn"] else text_list[i] for i, task in enumerate(task_list) ]
raw_text_list = [ sequence_list[i] if task in ["un-phn"] else raw_text_list[i] for i, task in enumerate(task_list) ]
else:
if raw_text_list is not None:
raw_text_list = [ sequence_list[i] if task in text_task else raw_text_list[i] for i, task in enumerate(task_list) ]
else:
text_list = [ sequence_list[i] if task in text_task else text_list[i] for i, task in enumerate(task_list) ]
resps_list = [ sequence_list[i] if task not in text_task else resps_list[i] for i, task in enumerate(task_list) ]
quant_levels = [ 0 for _ in range( max( batch_size, beam_width ) ) ]
inputs = self.inputs(
task_list=task_list,
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
raw_text_list=raw_text_list,
quant_levels=quant_levels,
)
# to-do: find an elegant way to write this
output = super().forward(
inputs=inputs,
state=state,
#layer_skip_variables=sampling_layer_skip_variables,
output_attentions=entropix_sampling,
)
if cfg_strength > 0:
null_inputs = super().inputs(
text_list=null_text,
proms_list=null_prom,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
null_output = super().forward(
inputs=null_inputs,
quant_levels=quant_levels,
#layer_skip_variables=sampling_layer_skip_variables,
)
logits = cfg_logits( logits=output.logits, null=null_output.logits, strength=cfg_strength, rescale=cfg_rescale, lens=[ resp.shape[0] + 1 for resp in resps_list ] )
logits, state = output.logits, output.state
sampled = super().sample(
logits=logits,
prev_list=[ resps_list[i] if task not in text_task else text_list[i] for i, task in enumerate( task_list ) ],
**(sampling_kwargs | {"attentions": output.attentions if entropix_sampling else None}),
)
ids = sampled.ids
if cfg.experimental:
if sampled.entropy:
metrics.append( sampled.entropy )
elif sampled.scores:
#metrics.append( [ { "p": p[0], "exited_layer": output.exited_layer } for p in sampled.scores ] )
metrics.append( [ { "p": p[0] } for p in sampled.scores ] )
if mirostat is not None:
mirostat = sampled.scores
elif beam_width > 0:
# expand tuple
s = sampled.scores
# first step, expand batch
if batch_size == 1:
batch_size = beam_width
text_list = text_list * beam_width
proms_list = proms_list * beam_width
sequence_list = sequence_list * beam_width
task_list = task_list * beam_width
start_slice = start_slice * beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
# append tokens
for i, token in enumerate(ids):
task = task_list[i]
stop_token = audio_stop_token if task not in text_task else text_stop_token
if stop_token in token:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], token.to(device)])
# stop token found
# stopped |= r == stop_token
if stopped.all().item():
iterator.close()
break
# to-do for layerskip / speculative sampling: rerun the last sequence again at max depth
"""
if metrics:
from ..plot import plot_sample_metrics
filename = "metrics"
if entropix_sampling:
filename += f'[entropix_sampling]'
if sampling_layer_skip_exit_layer >= 0:
filename += f'[{sampling_layer_skip_exit_layer+1}]'
plot_sample_metrics( metrics, filename=f'{filename}.png' )
"""
# pick the best scoring candidate
# desu this is always going to be candidate 0
if beam_width:
sequence_list = sequence_list[:1]
task_list = task_list[:1]
# remove stop token
sequence_list = [self._prune(r, audio_stop_token if task_list[i] not in text_task else text_stop_token) for i, r in enumerate(sequence_list)]
# remove <bos>
sequence_list = [ sequence_list[i][start_slice[i]:] for i, task in enumerate( task_list ) ]
if refine_on_stop:
# get how much we need to slice from the end
slice_lengths = [ sequence.shape[-1] for sequence in sequence_list ]
# -1 for the stop token
logits = [ logit[-length-1:-1] for logit, length in zip(logits, slice_lengths) ]
# greedy sample from the sequence
refined_list = [ logit.argmax(dim=-1) for logit in logits ]
# to-do: compare scores
# set the "refined" list as the output
sequence_list = refined_list
# slice out prefix
if prefix_context is not None:
prefix_text, prefix_resps, prefix_lens = prefix_context
sequence_list = [ resps[l:] for resps, l in zip(sequence_list, prefix_lens) ]
return sequence_list
def forward(
self,
task_list: list[Tensor] | None = None,
text_list: list[Tensor] | None = None,
proms_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
raw_text_list: list[Tensor] | None = None,
training: bool | None = None,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
# deduce batch_size
# deduce batch_size
if text_list:
device = text_list[0].device
batch_size = len(text_list)
elif raw_text_list:
device = raw_text_list[0].device
batch_size = len(raw_text_list)
elif proms_list:
device = proms_list[0].device
batch_size = len(proms_list)
elif resps_list:
device = resps_list[0].device
batch_size = len(resps_list)
# implicitly set for training
if training is None and text_list is not None and resps_list is not None:
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
training = n_levels == self.n_resp_levels
# is training
if training:
return self.forward_train(
task_list=task_list,
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
raw_text_list=raw_text_list,
)
# is NAR
if (len_list is not None or resps_list is not None) and text_list is not None:
return self.forward_nar(
task_list=task_list,
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
raw_text_list=raw_text_list,
disable_tqdm=disable_tqdm,
use_lora=use_lora,
**sampling_kwargs,
)
# is AR
return self.forward_ar(
task_list=task_list,
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
raw_text_list=raw_text_list,
disable_tqdm=disable_tqdm,
use_lora=use_lora,
**sampling_kwargs,
)
def example_usage():
cfg.device = "cuda"
cfg.trainer.backend = "local"
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_100
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model, trim_random, repeat_extend_audio, concat_audio, merge_audio
from ..engines import Engine, Engines
from ..utils import wrapper as ml
from ..utils import setup_logging
import numpy as np
import re
# cfg.model.experimental.masking_train_p = 0.5
cfg.hyperparameters.batch_size = 1
cfg.hyperparameters.gradient_accumulation_steps = 1
setup_logging()
def load_artifact( path ):
artifact = np.load(path, allow_pickle=True)[()]
text = torch.tensor( cfg.tokenizer.encode( artifact["metadata"]["phonemes"] ) ).to(dtype=torch.uint8, device=cfg.device)
audio = torch.from_numpy(artifact["codes"].astype(np.int16))[0, :, :].t().to(dtype=torch.int16, device=cfg.device)
return text, audio
text, audio = load_artifact(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
batch_size = cfg.hyperparameters.batch_size
text_list = [ text ] * batch_size
proms_list = [ audio[:cfg.dataset.frames_per_second, :] ] * batch_size
resps_list = [ audio[:cfg.dataset.frames_per_second * 4, :] ] * batch_size
kwargs = {
'n_text_tokens': 256,
'n_audio_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1 if not cfg.model else cfg.model.experts,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
bos_id, space_id, eos_id = cfg.tokenizer.encode( " " )
available_tasks = [] + (["tts-ar"] if "ar" in cfg.model.capabilities else []) + (["tts-nar"] if "len" in cfg.model.capabilities else [])
model = AR_NAR(**kwargs).to(cfg.device)
steps = 500 // batch_size
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
params = model.parameters()
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
elif optimizer == "apollo":
if learning_rate is None:
learning_rate = 0.01
optimizer = ml.Apollo
"""
target_params = []
target_modules_list = ["attn", "mlp"]
for module_name, module in model.named_modules():
if not (isinstance(module, torch.nn.Linear)):
continue
if not any(target_key in module_name for target_key in target_modules_list):
continue
target_params.append(module.weight)
param_ids = [id(p) for p in target_params]
regular_params = [p for p in model.parameters() if id(p) not in param_ids]
params = [{'params': regular_params}, {'params': target_params, 'rank': 1, 'proj': 'random', 'scale_type': 'tensor', 'scale': 128,'update_proj_gap': 200, 'proj_type': 'std'}]
"""
params = [{'params': params, 'rank': 1, 'proj': 'random', 'scale_type': 'tensor', 'scale': 128,'update_proj_gap': 200, 'proj_type': 'std'}]
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
_logger.info(f"Optimizer: {optimizer}\tLearning rate: {learning_rate}")
optimizer = optimizer(params, lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
_logger.info(f"Scheduler: {scheduler}")
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
"""
cfg.optimizations.model_offloading = {
"devices": ["cuda:0", "cpu"],
# "limits": [ 0.9, -1 ],
"assign": [[ f'layers.{i}.' for i in range(0,10) ], [ f'layers.{i}.' for i in range(11,12) ] + [ "model.norm" ]],
# "limits": [ 256 * (1024 ** 2), -1 ]
}
"""
engine = Engine(model=model, optimizer=optimizer)
engines = Engines({"ar+nar": engine})
engines.setup()
"""
if cfg.optimizations.model_offloading:
model = ml.offload_model( model, policy=cfg.optimizations.model_offloading )
"""
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
_logger.info(f"AR+NAR ({cfg.model.arch_type}, {cfg.audio_backend}) parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.no_grad()
def sample_data(t=None):
if isinstance(t, list):
tasks = t
texts = [ text_list[0].to(cfg.device) if task not in text_task else None for i, task in enumerate( tasks ) ]
proms = [ proms_list[0].to(cfg.device) if task not in text_task else [ "stt" ] for i, task in enumerate( tasks ) ]
resps = [ None if task not in text_task else resps_list[0].to(cfg.device) for i, task in enumerate( tasks ) ]
return texts, proms, resps, tasks
texts = []
proms = []
resps = []
tasks = []
for i in range(batch_size):
task = random.choice(available_tasks) if t is None else t
text = text_list[i].to(cfg.device)
prom = proms_list[i].to(cfg.device)
resp = resps_list[i].to(cfg.device)
# do nothing
if task == "stt":
prom = [ task ]
else:
task = "tts" if random.random() > 0.1 or "len" not in cfg.model.capabilities else "len"
texts.append( text )
proms.append( prom )
resps.append( resp )
tasks.append( task )
return texts, proms, resps, tasks
@torch.inference_mode()
def sample( name, steps=500, task=None ):
engine.eval()
text_list, proms_list, resp_list, task_list = sample_data( task )
if task == "tts-nar":
len_list = engine( text_list=text_list, proms_list=proms_list, task_list=["len"], max_steps=5, temperature=0.0 )
len_list = [ resp_list[0].shape[0] for l in len_list ]
resps_list = engine( text_list=text_list, proms_list=proms_list, len_list=len_list )
else:
resps_list = engine( text_list=text_list, proms_list=proms_list, task_list=["tts"], max_duration=steps, temperature=1.0 )
resps_list = engine( text_list=text_list, proms_list=proms_list, resps_list=resps_list, temperature=0.0 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.{task}.wav", device=cfg.device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
texts, proms, resps, tasks = sample_data()
stats = {"step": i}
stats |= engine.traverse(text_list=texts, proms_list=proms, resps_list=resps, task_list=tasks, training=True)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
#sample("init", 5)
train()
"""
if cfg.optimizations.compile:
model = ml.compile_model(model, backend=cfg.optimizations.compile)
"""
for task in available_tasks:
sample("final", task=task)
engines.quit()
if __name__ == "__main__":
example_usage()