to23oise-tts/tortoise_tts/models/arch_util.py
2022-04-27 15:04:15 +02:00

367 lines
13 KiB
Python

import functools
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from tortoise_tts.models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
groups = 32
if channels <= 16:
groups = 8
elif channels <= 64:
groups = 16
while channels % groups != 0:
groups = int(groups / 2)
assert groups > 2
return GroupNorm32(groups, channels)
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv, mask=None, rel_pos=None):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = torch.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
if rel_pos is not None:
weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape(bs * self.n_heads, weight.shape[-2], weight.shape[-1])
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
if mask is not None:
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
weight = weight * mask
a = torch.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
do_checkpoint=True,
relative_pos_embeddings=False,
):
super().__init__()
self.channels = channels
self.do_checkpoint = do_checkpoint
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.norm = normalization(channels)
self.qkv = nn.Conv1d(channels, channels * 3, 1)
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
if relative_pos_embeddings:
self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64)
else:
self.relative_pos_embeddings = None
def forward(self, x, mask=None):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv, mask, self.relative_pos_embeddings)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
"""
def __init__(self, channels, use_conv, out_channels=None, factor=4):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.factor = factor
if use_conv:
ksize = 5
pad = 2
self.conv = nn.Conv1d(self.channels, self.out_channels, ksize, padding=pad)
def forward(self, x):
assert x.shape[1] == self.channels
x = F.interpolate(x, scale_factor=self.factor, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
"""
def __init__(self, channels, use_conv, out_channels=None, factor=4, ksize=5, pad=2):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
stride = factor
if use_conv:
self.op = nn.Conv1d(
self.channels, self.out_channels, ksize, stride=stride, padding=pad
)
else:
assert self.channels == self.out_channels
self.op = nn.AvgPool1d(kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(nn.Module):
def __init__(
self,
channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
up=False,
down=False,
kernel_size=3,
):
super().__init__()
self.channels = channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
padding = 1 if kernel_size == 3 else 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False)
self.x_upd = Upsample(channels, False)
elif down:
self.h_upd = Downsample(channels, False)
self.x_upd = Downsample(channels, False)
else:
self.h_upd = self.x_upd = nn.Identity()
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = nn.Conv1d(
channels, self.out_channels, kernel_size, padding=padding
)
else:
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1)
def forward(self, x):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
h = self.out_layers(h)
return self.skip_connection(x) + h
class AudioMiniEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
base_channels=128,
depth=2,
resnet_blocks=2,
attn_blocks=4,
num_attn_heads=4,
dropout=0,
downsample_factor=2,
kernel_size=3):
super().__init__()
self.init = nn.Sequential(
nn.Conv1d(spec_dim, base_channels, 3, padding=1)
)
ch = base_channels
res = []
for l in range(depth):
for r in range(resnet_blocks):
res.append(ResBlock(ch, dropout, kernel_size=kernel_size))
res.append(Downsample(ch, use_conv=True, out_channels=ch*2, factor=downsample_factor))
ch *= 2
self.res = nn.Sequential(*res)
self.final = nn.Sequential(
normalization(ch),
nn.SiLU(),
nn.Conv1d(ch, embedding_dim, 1)
)
attn = []
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads,))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.res(h)
h = self.final(h)
h = self.attn(h)
return h[:, :, 0]
class TorchMelSpectrogram(nn.Module):
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000,
sampling_rate=22050, normalize=False, mel_norm_file='data/mel_norms.pth'):
super().__init__()
# These are the default tacotron values for the MEL spectrogram.
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.n_mel_channels = n_mel_channels
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.sampling_rate = sampling_rate
self.mel_stft = torchaudio.transforms.MelSpectrogram(n_fft=self.filter_length, hop_length=self.hop_length,
win_length=self.win_length, power=2, normalized=normalize,
sample_rate=self.sampling_rate, f_min=self.mel_fmin,
f_max=self.mel_fmax, n_mels=self.n_mel_channels,
norm="slaney")
self.mel_norm_file = mel_norm_file
if self.mel_norm_file is not None:
self.mel_norms = torch.load(self.mel_norm_file)
else:
self.mel_norms = None
def forward(self, inp):
if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio)
inp = inp.squeeze(1)
assert len(inp.shape) == 2
self.mel_stft = self.mel_stft.to(inp.device)
mel = self.mel_stft(inp)
# Perform dynamic range compression
mel = torch.log(torch.clamp(mel, min=1e-5))
if self.mel_norms is not None:
self.mel_norms = self.mel_norms.to(mel.device)
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
return mel
class CheckpointedLayer(nn.Module):
"""
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
checkpoint for all other args.
"""
def __init__(self, wrap):
super().__init__()
self.wrap = wrap
def forward(self, x, *args, **kwargs):
for k, v in kwargs.items():
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
partial = functools.partial(self.wrap, **kwargs)
return torch.utils.checkpoint.checkpoint(partial, x, *args)
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
self.needs_permute = needs_permute
self.exit_permute = exit_permute
if not checkpoint:
return
for i in range(len(self.transformer.attn_layers.layers)):
n, b, r = self.transformer.attn_layers.layers[i]
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, x, **kwargs):
if self.needs_permute:
x = x.permute(0,2,1)
h = self.transformer(x, **kwargs)
if self.exit_permute:
h = h.permute(0,2,1)
return h