engine/dep/include/draco/compression/attributes/normal_compression_utils.h

361 lines
13 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Utilities for converting unit vectors to octahedral coordinates and back.
// For more details about octahedral coordinates, see for example Cigolle
// et al.'14 “A Survey of Efficient Representations for Independent Unit
// Vectors”.
//
// In short this is motivated by an octahedron inscribed into a sphere. The
// direction of the normal vector can be defined by a point on the octahedron.
// On the right hemisphere (x > 0) this point is projected onto the x = 0 plane,
// that is, the right side of the octahedron forms a diamond like shape. The
// left side of the octahedron is also projected onto the x = 0 plane, however,
// in this case we flap the triangles of the diamond outward. Afterwards we
// shift the resulting square such that all values are positive.
//
// Important values in this file:
// * q: number of quantization bits
// * max_quantized_value: the max value representable with q bits (odd)
// * max_value: max value of the diamond = max_quantized_value - 1 (even)
// * center_value: center of the diamond after shift
//
// Note that the parameter space is somewhat periodic, e.g. (0, 0) ==
// (max_value, max_value), which is also why the diamond is one smaller than the
// maximal representable value in order to have an odd range of values.
#ifndef DRACO_COMPRESSION_ATTRIBUTES_NORMAL_COMPRESSION_UTILS_H_
#define DRACO_COMPRESSION_ATTRIBUTES_NORMAL_COMPRESSION_UTILS_H_
#include <inttypes.h>
#include <algorithm>
#include <cmath>
#include "draco/core/macros.h"
namespace draco {
class OctahedronToolBox {
public:
OctahedronToolBox()
: quantization_bits_(-1),
max_quantized_value_(-1),
max_value_(-1),
dequantization_scale_(1.f),
center_value_(-1) {}
bool SetQuantizationBits(int32_t q) {
if (q < 2 || q > 30) {
return false;
}
quantization_bits_ = q;
max_quantized_value_ = (1 << quantization_bits_) - 1;
max_value_ = max_quantized_value_ - 1;
dequantization_scale_ = 2.f / max_value_;
center_value_ = max_value_ / 2;
return true;
}
bool IsInitialized() const { return quantization_bits_ != -1; }
// Convert all edge points in the top left and bottom right quadrants to
// their corresponding position in the bottom left and top right quadrants.
// Convert all corner edge points to the top right corner.
inline void CanonicalizeOctahedralCoords(int32_t s, int32_t t, int32_t *out_s,
int32_t *out_t) const {
if ((s == 0 && t == 0) || (s == 0 && t == max_value_) ||
(s == max_value_ && t == 0)) {
s = max_value_;
t = max_value_;
} else if (s == 0 && t > center_value_) {
t = center_value_ - (t - center_value_);
} else if (s == max_value_ && t < center_value_) {
t = center_value_ + (center_value_ - t);
} else if (t == max_value_ && s < center_value_) {
s = center_value_ + (center_value_ - s);
} else if (t == 0 && s > center_value_) {
s = center_value_ - (s - center_value_);
}
*out_s = s;
*out_t = t;
}
// Converts an integer vector to octahedral coordinates.
// Precondition: |int_vec| abs sum must equal center value.
inline void IntegerVectorToQuantizedOctahedralCoords(const int32_t *int_vec,
int32_t *out_s,
int32_t *out_t) const {
DRACO_DCHECK_EQ(
std::abs(int_vec[0]) + std::abs(int_vec[1]) + std::abs(int_vec[2]),
center_value_);
int32_t s, t;
if (int_vec[0] >= 0) {
// Right hemisphere.
s = (int_vec[1] + center_value_);
t = (int_vec[2] + center_value_);
} else {
// Left hemisphere.
if (int_vec[1] < 0) {
s = std::abs(int_vec[2]);
} else {
s = (max_value_ - std::abs(int_vec[2]));
}
if (int_vec[2] < 0) {
t = std::abs(int_vec[1]);
} else {
t = (max_value_ - std::abs(int_vec[1]));
}
}
CanonicalizeOctahedralCoords(s, t, out_s, out_t);
}
template <class T>
void FloatVectorToQuantizedOctahedralCoords(const T *vector, int32_t *out_s,
int32_t *out_t) const {
const double abs_sum = std::abs(static_cast<double>(vector[0])) +
std::abs(static_cast<double>(vector[1])) +
std::abs(static_cast<double>(vector[2]));
// Adjust values such that abs sum equals 1.
double scaled_vector[3];
if (abs_sum > 1e-6) {
// Scale needed to project the vector to the surface of an octahedron.
const double scale = 1.0 / abs_sum;
scaled_vector[0] = vector[0] * scale;
scaled_vector[1] = vector[1] * scale;
scaled_vector[2] = vector[2] * scale;
} else {
scaled_vector[0] = 1.0;
scaled_vector[1] = 0;
scaled_vector[2] = 0;
}
// Scale vector such that the sum equals the center value.
int32_t int_vec[3];
int_vec[0] =
static_cast<int32_t>(floor(scaled_vector[0] * center_value_ + 0.5));
int_vec[1] =
static_cast<int32_t>(floor(scaled_vector[1] * center_value_ + 0.5));
// Make sure the sum is exactly the center value.
int_vec[2] = center_value_ - std::abs(int_vec[0]) - std::abs(int_vec[1]);
if (int_vec[2] < 0) {
// If the sum of first two coordinates is too large, we need to decrease
// the length of one of the coordinates.
if (int_vec[1] > 0) {
int_vec[1] += int_vec[2];
} else {
int_vec[1] -= int_vec[2];
}
int_vec[2] = 0;
}
// Take care of the sign.
if (scaled_vector[2] < 0) {
int_vec[2] *= -1;
}
IntegerVectorToQuantizedOctahedralCoords(int_vec, out_s, out_t);
}
// Normalize |vec| such that its abs sum is equal to the center value;
template <class T>
void CanonicalizeIntegerVector(T *vec) const {
static_assert(std::is_integral<T>::value, "T must be an integral type.");
static_assert(std::is_signed<T>::value, "T must be a signed type.");
const int64_t abs_sum = static_cast<int64_t>(std::abs(vec[0])) +
static_cast<int64_t>(std::abs(vec[1])) +
static_cast<int64_t>(std::abs(vec[2]));
if (abs_sum == 0) {
vec[0] = center_value_; // vec[1] == v[2] == 0
} else {
vec[0] =
(static_cast<int64_t>(vec[0]) * static_cast<int64_t>(center_value_)) /
abs_sum;
vec[1] =
(static_cast<int64_t>(vec[1]) * static_cast<int64_t>(center_value_)) /
abs_sum;
if (vec[2] >= 0) {
vec[2] = center_value_ - std::abs(vec[0]) - std::abs(vec[1]);
} else {
vec[2] = -(center_value_ - std::abs(vec[0]) - std::abs(vec[1]));
}
}
}
inline void QuantizedOctahedralCoordsToUnitVector(int32_t in_s, int32_t in_t,
float *out_vector) const {
OctahedralCoordsToUnitVector(in_s * dequantization_scale_ - 1.f,
in_t * dequantization_scale_ - 1.f,
out_vector);
}
// |s| and |t| are expected to be signed values.
inline bool IsInDiamond(const int32_t &s, const int32_t &t) const {
// Expect center already at origin.
DRACO_DCHECK_LE(s, center_value_);
DRACO_DCHECK_LE(t, center_value_);
DRACO_DCHECK_GE(s, -center_value_);
DRACO_DCHECK_GE(t, -center_value_);
return std::abs(s) + std::abs(t) <= center_value_;
}
void InvertDiamond(int32_t *s, int32_t *t) const {
// Expect center already at origin.
DRACO_DCHECK_LE(*s, center_value_);
DRACO_DCHECK_LE(*t, center_value_);
DRACO_DCHECK_GE(*s, -center_value_);
DRACO_DCHECK_GE(*t, -center_value_);
int32_t sign_s = 0;
int32_t sign_t = 0;
if (*s >= 0 && *t >= 0) {
sign_s = 1;
sign_t = 1;
} else if (*s <= 0 && *t <= 0) {
sign_s = -1;
sign_t = -1;
} else {
sign_s = (*s > 0) ? 1 : -1;
sign_t = (*t > 0) ? 1 : -1;
}
const int32_t corner_point_s = sign_s * center_value_;
const int32_t corner_point_t = sign_t * center_value_;
*s = 2 * *s - corner_point_s;
*t = 2 * *t - corner_point_t;
if (sign_s * sign_t >= 0) {
int32_t temp = *s;
*s = -*t;
*t = -temp;
} else {
std::swap(*s, *t);
}
*s = (*s + corner_point_s) / 2;
*t = (*t + corner_point_t) / 2;
}
void InvertDirection(int32_t *s, int32_t *t) const {
// Expect center already at origin.
DRACO_DCHECK_LE(*s, center_value_);
DRACO_DCHECK_LE(*t, center_value_);
DRACO_DCHECK_GE(*s, -center_value_);
DRACO_DCHECK_GE(*t, -center_value_);
*s *= -1;
*t *= -1;
this->InvertDiamond(s, t);
}
// For correction values.
int32_t ModMax(int32_t x) const {
if (x > this->center_value()) {
return x - this->max_quantized_value();
}
if (x < -this->center_value()) {
return x + this->max_quantized_value();
}
return x;
}
// For correction values.
int32_t MakePositive(int32_t x) const {
DRACO_DCHECK_LE(x, this->center_value() * 2);
if (x < 0) {
return x + this->max_quantized_value();
}
return x;
}
int32_t quantization_bits() const { return quantization_bits_; }
int32_t max_quantized_value() const { return max_quantized_value_; }
int32_t max_value() const { return max_value_; }
int32_t center_value() const { return center_value_; }
private:
inline void OctahedralCoordsToUnitVector(float in_s_scaled, float in_t_scaled,
float *out_vector) const {
// Background about the encoding:
// A normal is encoded in a normalized space <s, t> depicted below. The
// encoding correponds to an octahedron that is unwrapped to a 2D plane.
// During encoding, a normal is projected to the surface of the octahedron
// and the projection is then unwrapped to the 2D plane. Decoding is the
// reverse of this process.
// All points in the central diamond are located on triangles on the
// right "hemisphere" of the octahedron while all points outside of the
// diamond are on the left hemisphere (basically, they would have to be
// wrapped along the diagonal edges to form the octahedron). The central
// point corresponds to the right most vertex of the octahedron and all
// corners of the plane correspond to the left most vertex of the
// octahedron.
//
// t
// ^ *-----*-----*
// | | /|\ |
// | / | \ |
// | / | \ |
// | / | \ |
// *-----*---- *
// | \ | / |
// | \ | / |
// | \ | / |
// | \|/ |
// *-----*-----* --> s
// Note that the input |in_s_scaled| and |in_t_scaled| are already scaled to
// <-1, 1> range. This way, the central point is at coordinate (0, 0).
float y = in_s_scaled;
float z = in_t_scaled;
// Remaining coordinate can be computed by projecting the (y, z) values onto
// the surface of the octahedron.
const float x = 1.f - abs(y) - abs(z);
// |x| is essentially a signed distance from the diagonal edges of the
// diamond shown on the figure above. It is positive for all points in the
// diamond (right hemisphere) and negative for all points outside the
// diamond (left hemisphere). For all points on the left hemisphere we need
// to update their (y, z) coordinates to account for the wrapping along
// the edges of the diamond.
float x_offset = -x;
x_offset = x_offset < 0 ? 0 : x_offset;
// This will do nothing for the points on the right hemisphere but it will
// mirror the (y, z) location along the nearest diagonal edge of the
// diamond.
y += y < 0 ? x_offset : -x_offset;
z += z < 0 ? x_offset : -x_offset;
// Normalize the computed vector.
const float norm_squared = x * x + y * y + z * z;
if (norm_squared < 1e-6) {
out_vector[0] = 0;
out_vector[1] = 0;
out_vector[2] = 0;
} else {
const float d = 1.0f / std::sqrt(norm_squared);
out_vector[0] = x * d;
out_vector[1] = y * d;
out_vector[2] = z * d;
}
}
int32_t quantization_bits_;
int32_t max_quantized_value_;
int32_t max_value_;
float dequantization_scale_;
int32_t center_value_;
};
} // namespace draco
#endif // DRACO_COMPRESSION_ATTRIBUTES_NORMAL_COMPRESSION_UTILS_H_