WIP: Start implementing new allocator
This commit is contained in:
parent
34173d926c
commit
f278777c0e
|
@ -81,6 +81,7 @@ set(
|
||||||
GL/texture.c
|
GL/texture.c
|
||||||
GL/util.c
|
GL/util.c
|
||||||
GL/yalloc/yalloc.c
|
GL/yalloc/yalloc.c
|
||||||
|
GL/alloc/alloc.c
|
||||||
${CMAKE_CURRENT_BINARY_DIR}/version.c
|
${CMAKE_CURRENT_BINARY_DIR}/version.c
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
228
GL/alloc/alloc.c
Normal file
228
GL/alloc/alloc.c
Normal file
|
@ -0,0 +1,228 @@
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
#include "alloc.h"
|
||||||
|
|
||||||
|
|
||||||
|
/* This allocator is designed so that all allocations larger
|
||||||
|
* than 2k, fall on a 2k boundary. Smaller allocations will
|
||||||
|
* never cross a 2k boundary.
|
||||||
|
*
|
||||||
|
* House keeping is stored in RAM to avoid reading back from the
|
||||||
|
* VRAM to check for usage. Headers can't be easily stored in the
|
||||||
|
* blocks anyway as they have to be 2k aligned (so you'd need to
|
||||||
|
* store them in reverse or something)
|
||||||
|
*
|
||||||
|
* Defragmenting the pool will move allocations less than 2k
|
||||||
|
* first, and then shift any full 2k blocks to the start of the
|
||||||
|
* address space.
|
||||||
|
*
|
||||||
|
* The maximum pool size is 8M, made up of:
|
||||||
|
*
|
||||||
|
* - 4096 blocks of 2k
|
||||||
|
* - each with 8 sub-blocks of 256 bytes
|
||||||
|
*
|
||||||
|
* Why?
|
||||||
|
*
|
||||||
|
* The PVR performs better if textures don't cross 2K memory
|
||||||
|
* addresses, so we try to avoid that. Obviously we can't
|
||||||
|
* if the allocation is > 2k, but in that case we can at least
|
||||||
|
* align with 2k and the VQ codebook (which is usually 2k) will
|
||||||
|
* be in its own page.
|
||||||
|
*
|
||||||
|
* The smallest PVR texture allowed is 8x8 at 16 bit (so 128 bytes)
|
||||||
|
* but we're unlikely to use too many of those, so having a min sub-block
|
||||||
|
* size of 256 should be OK (a 16x16 image is 512, so two sub-blocks).
|
||||||
|
*
|
||||||
|
* We could go down to 128 bytes if wastage is an issue, but then we have
|
||||||
|
* to store double the number of usage markers.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <assert.h>
|
||||||
|
|
||||||
|
#define EIGHT_MEG (8 * 1024 * 1024)
|
||||||
|
#define TWO_KILOBYTES (2 * 1024)
|
||||||
|
#define BLOCK_COUNT (EIGHT_MEG / TWO_KILOBYTES)
|
||||||
|
|
||||||
|
static inline int round_up(int n, int multiple)
|
||||||
|
{
|
||||||
|
assert(multiple);
|
||||||
|
return ((n + multiple - 1) / multiple) * multiple;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct AllocEntry {
|
||||||
|
void* pointer;
|
||||||
|
size_t size;
|
||||||
|
struct AllocEntry* next;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
/* This is a usage bitmask for each block. A block
|
||||||
|
* is divided into 8 x 256 byte subblocks. If a block
|
||||||
|
* is entirely used, it's value will be 255, if
|
||||||
|
* it's entirely free then it will be 0.
|
||||||
|
*/
|
||||||
|
uint8_t block_usage[BLOCK_COUNT];
|
||||||
|
uint8_t* pool; // Pointer to the memory pool
|
||||||
|
size_t pool_size; // Size of the memory pool
|
||||||
|
uint8_t* base_address; // First 2k aligned address in the pool
|
||||||
|
size_t block_count; // Number of 2k blocks in the pool
|
||||||
|
|
||||||
|
/* It's frustrating that we need to do this dynamically
|
||||||
|
* but we need to know the size allocated when we free() */
|
||||||
|
struct AllocEntry* allocations;
|
||||||
|
} PoolHeader;
|
||||||
|
|
||||||
|
|
||||||
|
static PoolHeader pool_header = {
|
||||||
|
{0}, NULL, 0, NULL, 0, NULL
|
||||||
|
};
|
||||||
|
|
||||||
|
void* alloc_base_address(void* pool) {
|
||||||
|
return pool_header.base_address;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t alloc_block_count(void* pool) {
|
||||||
|
return pool_header.block_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
void* alloc_next_available(void* pool, size_t required_size) {
|
||||||
|
uint8_t* it = pool_header.block_usage;
|
||||||
|
uint32_t required_subblocks = (required_size / 256);
|
||||||
|
if(required_size % 256) required_subblocks += 1;
|
||||||
|
|
||||||
|
while(true) {
|
||||||
|
// Skip full blocks
|
||||||
|
while((*it) == 255) {
|
||||||
|
++it;
|
||||||
|
if(it >= pool_header.block_usage + sizeof(pool_header.block_usage)) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t found_subblocks = 0;
|
||||||
|
bool requires_alignment = required_size >= 2048;
|
||||||
|
|
||||||
|
/* We just need to find enough consecutive blocks */
|
||||||
|
while(found_subblocks < required_subblocks) {
|
||||||
|
uint8_t t = *it;
|
||||||
|
|
||||||
|
/* Optimisation only. Skip over full blocks */
|
||||||
|
if(t == 255) {
|
||||||
|
++it;
|
||||||
|
found_subblocks = 0;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Now let's see how many consecutive blocks we can find */
|
||||||
|
for(int i = 0; i < 8; ++i) {
|
||||||
|
if((t & 0x80) == 0) {
|
||||||
|
if(requires_alignment && found_subblocks == 0 && i != 0) {
|
||||||
|
// Ignore this subblock, because we want the first subblock to be aligned
|
||||||
|
// at a 2048 boundary and this one isn't (i != 0)
|
||||||
|
found_subblocks = 0;
|
||||||
|
} else {
|
||||||
|
found_subblocks++;
|
||||||
|
if(found_subblocks >= required_subblocks) {
|
||||||
|
/* We found space! Now calculate the address */
|
||||||
|
uintptr_t offset = (it - pool_header.block_usage) * 8;
|
||||||
|
offset += (i + 1);
|
||||||
|
offset -= required_subblocks;
|
||||||
|
return pool_header.base_address + (offset * 256);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
found_subblocks = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
t <<= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
++it;
|
||||||
|
if(it >= pool_header.block_usage + sizeof(pool_header.block_usage)) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t alloc_block_from_address(void* p) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
int alloc_init(void* pool, size_t size) {
|
||||||
|
if(pool_header.pool) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(size > EIGHT_MEG) { // FIXME: >= ?
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t* p = (uint8_t*) pool;
|
||||||
|
|
||||||
|
memset(pool_header.block_usage, 0, sizeof(pool_header.block_usage));
|
||||||
|
pool_header.pool = pool;
|
||||||
|
pool_header.pool_size = size;
|
||||||
|
pool_header.base_address = round_up(pool_header.pool, 2048);
|
||||||
|
pool_header.block_count = ((p + size) - pool_header.base_address) / 2048;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void alloc_shutdown(void* pool) {
|
||||||
|
pool_header.pool = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
void* alloc_malloc(void* pool, size_t size) {
|
||||||
|
void* ret = alloc_next_available(pool, size);
|
||||||
|
if(ret) {
|
||||||
|
uintptr_t start_subblock = (uint8_t*) ret - pool_header.base_address;
|
||||||
|
|
||||||
|
uint32_t required_subblocks = (size / 256);
|
||||||
|
if(size % 256) required_subblocks += 1;
|
||||||
|
|
||||||
|
uintptr_t start_block = start_subblock / 8;
|
||||||
|
uintptr_t filled_blocks = required_subblocks / 8;
|
||||||
|
uintptr_t trailing_subblocks = required_subblocks % 8;
|
||||||
|
|
||||||
|
for(size_t i = start_block; i < start_block + filled_blocks; ++i) {
|
||||||
|
pool_header.block_usage[i] = 255;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t* trailing = &pool_header.block_usage[start_block + filled_blocks];
|
||||||
|
uint8_t mask = 0;
|
||||||
|
for(size_t i = 0; i < trailing_subblocks; ++i) {
|
||||||
|
mask |= 1;
|
||||||
|
mask <<= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
mask <<= 8 - trailing_subblocks - 1;
|
||||||
|
*trailing |= mask;
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void alloc_free(void* pool, void* p) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void alloc_defrag_start(void* pool) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void* alloc_defrag_address(void* pool, void* p) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void alloc_defrag_commit(void* pool) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
bool alloc_defrag_in_progress(void* pool) {
|
||||||
|
|
||||||
|
}
|
28
GL/alloc/alloc.h
Normal file
28
GL/alloc/alloc.h
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <stdbool.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int alloc_init(void* pool, size_t size);
|
||||||
|
void alloc_shutdown(void* pool);
|
||||||
|
|
||||||
|
void *alloc_malloc(void* pool, size_t size);
|
||||||
|
void alloc_free(void* pool, void* p);
|
||||||
|
|
||||||
|
void alloc_defrag_start(void* pool);
|
||||||
|
void* alloc_defrag_address(void* pool, void* p);
|
||||||
|
void alloc_defrag_commit(void* pool);
|
||||||
|
bool alloc_defrag_in_progress(void* pool);
|
||||||
|
|
||||||
|
void* alloc_next_available(void* pool, size_t required_size);
|
||||||
|
void* alloc_base_address(void* pool);
|
||||||
|
size_t alloc_block_count(void* pool);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
|
@ -16,7 +16,7 @@ ADD_CUSTOM_COMMAND(
|
||||||
add_executable(gldc_tests ${TEST_FILES} ${TEST_SOURCES} ${TEST_MAIN_FILENAME})
|
add_executable(gldc_tests ${TEST_FILES} ${TEST_SOURCES} ${TEST_MAIN_FILENAME})
|
||||||
target_link_libraries(gldc_tests GLdc)
|
target_link_libraries(gldc_tests GLdc)
|
||||||
|
|
||||||
if(!PLATFORM_DREAMCAST)
|
if(NOT PLATFORM_DREAMCAST)
|
||||||
set_target_properties(
|
set_target_properties(
|
||||||
gldc_tests
|
gldc_tests
|
||||||
PROPERTIES
|
PROPERTIES
|
||||||
|
|
Loading…
Reference in New Issue
Block a user