Replace the entire matrix stack handling to work towards fixing lighting

This commit is contained in:
Luke Benstead 2018-05-16 21:00:41 +01:00
parent 4218111ab8
commit f9cdefcd81
10 changed files with 543 additions and 437 deletions

View File

@ -123,15 +123,36 @@ static void _parseIndex(GLshort* out, const GLubyte* in, GLenum type) {
}
}
/*
inline void mat_trans_float3_nodiv(const GLfloat* mat, GLfloat* v) {
GLfloat x = v[0] * mat[0] + v[1] * mat[4] + v[2] * mat[8] + mat[12];
GLfloat y = v[0] * mat[1] + v[1] * mat[5] + v[2] * mat[9] + mat[13];
GLfloat z = v[0] * mat[2] + v[1] * mat[6] + v[2] * mat[10] + mat[14];
v[0] = x;
v[1] = y;
v[2] = z;
} */
void transformToEyeSpace(GLfloat* point) {
_matrixLoadModelView();
mat_trans_single3_nodiv(point[0], point[1], point[2]);
}
void transformNormalToEyeSpace(GLfloat* normal) {
_matrixLoadNormal();
mat_trans_normal3(normal[0], normal[1], normal[2]);
}
static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum type, const GLvoid* indices) {
static float normal[3];
static GLfloat normal[3] = {0.0f, 0.0f, -1.0f};
static GLfloat eye_P[3];
static GLfloat eye_N[3];
if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) {
return;
}
_glKosMatrixApplyRender(); /* Apply the Render Matrix Stack */
const GLsizei elements = (mode == GL_QUADS) ? 4 : (mode == GL_TRIANGLES) ? 3 : (mode == GL_LINES) ? 2 : count;
// Make room for the element + the header
@ -185,7 +206,6 @@ static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum typ
}
_parseFloats(&vertex->x, vptr + (idx * vstride), VERTEX_POINTER.size, VERTEX_POINTER.type);
transformVertex(&vertex->x, &vertex->x, &vertex->y, &vertex->z);
if(ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) {
_parseColour(&vertex->argb, cptr + (idx * cstride), DIFFUSE_POINTER.size, DIFFUSE_POINTER.type);
@ -197,6 +217,9 @@ static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum typ
if(ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) {
_parseFloats(normal, nptr + (idx * nstride), NORMAL_POINTER.size, NORMAL_POINTER.type);
} else {
normal[0] = normal[1] = 0.0f;
normal[2] = -1.0f;
}
if(lighting_enabled) {
@ -205,12 +228,22 @@ static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum typ
GLfloat contribution [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f};
/* FIXME!!! Transform the position to eye space */
/* Transform the vertex and normal into eye-space */
eye_P[0] = vertex->x;
eye_P[1] = vertex->y;
eye_P[2] = vertex->z;
eye_N[0] = normal[0];
eye_N[1] = normal[1];
eye_N[2] = normal[2];
transformToEyeSpace(eye_P);
transformNormalToEyeSpace(eye_N);
GLubyte j;
for(j = 0; j < MAX_LIGHTS; ++j) {
if(isLightEnabled(i)) {
calculateLightingContribution(j, &vertex->x, normal, to_add);
calculateLightingContribution(j, eye_P, eye_N, to_add);
contribution[0] += to_add[0];
contribution[1] += to_add[1];
@ -222,6 +255,9 @@ static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum typ
vertex->argb = PVR_PACK_COLOR(contribution[3], contribution[0], contribution[1], contribution[2]);
}
_applyRenderMatrix(); /* Apply the Render Matrix Stack */
transformVertex(&vertex->x, &vertex->x, &vertex->y, &vertex->z);
++dst;
}
}

View File

@ -64,12 +64,12 @@ void APIENTRY glKosInit() {
_initPVR();
initMatrices();
initAttributePointers();
initContext();
initLights();
initImmediateMode();
_glKosInitMatrix();
_glKosInitTextures();
OP_LIST.list_type = PVR_LIST_OP_POLY;

View File

@ -1,3 +1,5 @@
#include <stdio.h>
#include <dc/vec3f.h>
#include "private.h"
static GLfloat SCENE_AMBIENT [] = {0.2, 0.2, 0.2, 1.0};
@ -107,7 +109,7 @@ void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
case GL_POSITION:
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
break;
case GL_CONSTANT_ATTENUATION:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
case GL_SPOT_CUTOFF:
@ -196,7 +198,69 @@ void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
}
}
void calculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, GLfloat* colour) {
colour[0] = colour[3] = 0.0f;
colour[1] = colour[2] = 0.0f;
inline void initVec3(struct vec3f* v, const GLfloat* src) {
memcpy(v, src, sizeof(GLfloat) * 3);
}
/* Fast POW Implementation - Less accurate, but much faster than math.h */
#define EXP_A 184
#define EXP_C 16249
static float FEXP(float y) {
union {
float d;
struct {
short j, i;
} n;
} eco;
eco.n.i = EXP_A * (y) + (EXP_C);
eco.n.j = 0;
return eco.d;
}
static float FLOG(float y) {
int *nTemp = (int *)&y;
y = (*nTemp) >> 16;
return (y - EXP_C) / EXP_A;
}
static float FPOW(float b, float p) {
return FEXP(FLOG(b) * p);
}
void calculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, GLfloat* colour) {
LightSource* l = &LIGHTS[light];
struct vec3f L, N, V;
L.x = l->position[0] - pos[0];
L.y = l->position[1] - pos[1];
L.z = l->position[2] - pos[2];
N.x = normal[0];
N.y = normal[1];
N.z = normal[2];
V.x = -pos[0];
V.y = -pos[1];
V.z = -pos[2];
vec3f_normalize(L.x, L.y, L.z);
vec3f_normalize(V.x, V.y, V.z);
GLfloat LdotN;
vec3f_dot(L.x, L.y, L.z, N.x, N.y, N.z, LdotN);
GLfloat f = (LdotN < 0) ? 0 : 1;
GLfloat VdotN;
vec3f_dot(V.x, V.y, V.z, N.x, N.y, N.z, VdotN);
GLfloat VdotR = VdotN - LdotN;
GLfloat specularPower = FPOW(VdotR > 0 ? VdotR : 0, MATERIAL.exponent);
colour[0] = l->ambient[0] * MATERIAL.ambient[0] + f * (l->diffuse[0] * MATERIAL.diffuse[0] * LdotN); // + l->specular[0] * MATERIAL.specular[0] * specularPower);
colour[1] = l->ambient[1] * MATERIAL.ambient[1] + f * (l->diffuse[1] * MATERIAL.diffuse[1] * LdotN); // + l->specular[1] * MATERIAL.specular[1] * specularPower);
colour[2] = l->ambient[2] * MATERIAL.ambient[2] + f * (l->diffuse[2] * MATERIAL.diffuse[2] * LdotN); // + l->specular[2] * MATERIAL.specular[2] * specularPower);
colour[3] = MATERIAL.diffuse[3];
}

370
GL/matrix.c Normal file
View File

@ -0,0 +1,370 @@
#include <dc/matrix.h>
#include "../include/gl.h"
#include "../containers/stack.h"
#include "../gl-sh4.h"
/* Viewport mapping */
static GLfloat gl_viewport_scale[3], gl_viewport_offset[3];
/* Depth range */
static GLclampf gl_depthrange_near, gl_depthrange_far;
/* Viewport size */
static GLint gl_viewport_x1, gl_viewport_y1, gl_viewport_width, gl_viewport_height;
static Stack MATRIX_STACKS[3]; // modelview, projection, texture
static matrix_t NORMAL_MATRIX __attribute__((aligned(32)));
static matrix_t SCREENVIEW_MATRIX __attribute__((aligned(32)));
static matrix_t RENDER_MATRIX __attribute__((aligned(32)));
static GLenum MATRIX_MODE = GL_MODELVIEW;
static GLubyte MATRIX_IDX = 0;
static const matrix_t IDENTITY = {
{1.0f, 0.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 0.0f, 1.0f}
};
void APIENTRY glDepthRange(GLclampf n, GLclampf f);
void initMatrices() {
init_stack(&MATRIX_STACKS[0], sizeof(matrix_t), 32);
init_stack(&MATRIX_STACKS[1], sizeof(matrix_t), 32);
init_stack(&MATRIX_STACKS[2], sizeof(matrix_t), 32);
stack_push(&MATRIX_STACKS[0], IDENTITY);
stack_push(&MATRIX_STACKS[1], IDENTITY);
stack_push(&MATRIX_STACKS[2], IDENTITY);
memcpy(NORMAL_MATRIX, IDENTITY, sizeof(matrix_t));
memcpy(SCREENVIEW_MATRIX, IDENTITY, sizeof(matrix_t));
glDepthRange(0.0f, 1.0f);
glViewport(0, 0, vid_mode->width, vid_mode->height);
}
static void recalculateNormalMatrix() {
}
void APIENTRY glMatrixMode(GLenum mode) {
MATRIX_MODE = mode;
MATRIX_IDX = mode & 0xF;
}
void APIENTRY glPushMatrix() {
stack_push(MATRIX_STACKS + MATRIX_IDX, stack_top(MATRIX_STACKS + MATRIX_IDX));
}
void APIENTRY glPopMatrix() {
stack_pop(MATRIX_STACKS + MATRIX_IDX);
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glLoadIdentity() {
stack_replace(MATRIX_STACKS + MATRIX_IDX, IDENTITY);
}
void APIENTRY glTranslatef(GLfloat x, GLfloat y, GLfloat z) {
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_translate(x, y, z);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glScalef(GLfloat x, GLfloat y, GLfloat z) {
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_scale(x, y, z);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {
float r = DEG2RAD * -angle;
vec3f_normalize(x, y, z);
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_rotate(r * x, r * y, r * z);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Load an arbitrary matrix */
void APIENTRY glLoadMatrixf(const GLfloat *m) {
stack_replace(MATRIX_STACKS + MATRIX_IDX, m);
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Ortho */
void APIENTRY glOrtho(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
/* Ortho Matrix */
static matrix_t OrthoMatrix __attribute__((aligned(32))) = {
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
OrthoMatrix[0][0] = 2.0f / (right - left);
OrthoMatrix[1][1] = 2.0f / (top - bottom);
OrthoMatrix[2][2] = -2.0f / (zfar - znear);
OrthoMatrix[3][0] = -(right + left) / (right - left);;
OrthoMatrix[3][1] = -(top + bottom) / (top - bottom);
OrthoMatrix[3][2] = -(zfar + znear) / (zfar - znear);
mat_load(stack_top(MATRIX_STACKS + MATRIX_MODE));
mat_apply(&OrthoMatrix);
mat_store(stack_top(MATRIX_STACKS + MATRIX_MODE));
}
/* Set the GL frustum */
void APIENTRY glFrustum(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
/* Frustum Matrix */
static matrix_t FrustumMatrix __attribute__((aligned(32))) = {
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, -1.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f }
};
FrustumMatrix[0][0] = (2.0f * znear) / (right - left);
FrustumMatrix[2][0] = (right + left) / (right - left);
FrustumMatrix[1][1] = (2.0f * znear) / (top - bottom);
FrustumMatrix[2][1] = (top + bottom) / (top - bottom);
FrustumMatrix[2][2] = zfar / (zfar - znear);
FrustumMatrix[3][2] = -(zfar * znear) / (zfar - znear);
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_apply(&FrustumMatrix);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
}
/* Set the Perspective */
void gluPerspective(GLfloat angle, GLfloat aspect,
GLfloat znear, GLfloat zfar) {
GLfloat xmin, xmax, ymin, ymax;
ymax = znear * ftan(angle * F_PI / 360.0f);
ymin = -ymax;
xmin = ymin * aspect;
xmax = ymax * aspect;
glFrustum(xmin, xmax, ymin, ymax, znear, zfar);
}
/* Multiply the current matrix by an arbitrary matrix */
void glMultMatrixf(const GLfloat *m) {
static matrix_t TEMP __attribute__((aligned(32))) = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
memcpy(TEMP, m, sizeof(matrix_t));
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_apply(&TEMP);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Load an arbitrary transposed matrix */
void glLoadTransposeMatrixf(const GLfloat *m) {
stack_replace(MATRIX_STACKS + MATRIX_IDX, m);
transpose(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Multiply the current matrix by an arbitrary transposed matrix */
void glMultTransposeMatrixf(const GLfloat *m) {
static matrix_t ml;
ml[0][0] = m[0];
ml[0][1] = m[4];
ml[0][2] = m[8];
ml[0][3] = m[12];
ml[1][0] = m[1];
ml[1][1] = m[5];
ml[1][2] = m[9];
ml[1][3] = m[13];
ml[2][0] = m[2];
ml[2][1] = m[6];
ml[2][2] = m[10];
ml[2][3] = m[14];
ml[3][0] = m[3];
ml[3][1] = m[7];
ml[3][2] = m[11];
ml[3][3] = m[15];
mat_load(stack_top(MATRIX_STACKS + MATRIX_IDX));
mat_apply(&ml);
mat_store(stack_top(MATRIX_STACKS + MATRIX_IDX));
}
/* Set the GL viewport */
void APIENTRY glViewport(GLint x, GLint y, GLsizei width, GLsizei height) {
gl_viewport_x1 = x;
gl_viewport_y1 = y;
gl_viewport_width = width;
gl_viewport_height = height;
/* Calculate the viewport scale and offset */
gl_viewport_scale[0] = (GLfloat)width / 2.0f;
gl_viewport_offset[0] = gl_viewport_scale[0] + (GLfloat)x;
gl_viewport_scale[1] = (GLfloat)height / 2.0f;
gl_viewport_offset[1] = gl_viewport_scale[1] + (GLfloat)y;
gl_viewport_scale[2] = (gl_depthrange_far - gl_depthrange_near) / 2.0f;
gl_viewport_offset[2] = (gl_depthrange_near + gl_depthrange_far) / 2.0f;
gl_viewport_offset[2] += 0.0001f;
/* Set the Screenview Matrix based on the viewport */
SCREENVIEW_MATRIX[0][0] = gl_viewport_scale[0];
SCREENVIEW_MATRIX[1][1] = -gl_viewport_scale[1];
SCREENVIEW_MATRIX[2][2] = 1;
SCREENVIEW_MATRIX[3][0] = gl_viewport_offset[0];
SCREENVIEW_MATRIX[3][1] = vid_mode->height - gl_viewport_offset[1];
}
/* Set the depth range */
void APIENTRY glDepthRange(GLclampf n, GLclampf f) {
/* clamp the values... */
if(n < 0.0f) n = 0.0f;
else if(n > 1.0f) n = 1.0f;
if(f < 0.0f) f = 0.0f;
else if(f > 1.0f) f = 1.0f;
gl_depthrange_near = n;
gl_depthrange_far = f;
/* Adjust the viewport scale and offset for Z */
gl_viewport_scale[2] = ((f - n) / 2.0f);
gl_viewport_offset[2] = (n + f) / 2.0f;
}
/* Vector Cross Product - Used by glhLookAtf2 */
static inline void vec3f_cross(vector3f v1, vector3f v2, vector3f result) {
result[0] = v1[1] * v2[2] - v1[2] * v2[1];
result[1] = v1[2] * v2[0] - v1[0] * v2[2];
result[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
/* glhLookAtf2 adapted from http://www.opengl.org/wiki/GluLookAt_code */
void glhLookAtf2(vector3f eyePosition3D,
vector3f center3D,
vector3f upVector3D) {
/* Look-At Matrix */
static matrix4f MatrixLookAt __attribute__((aligned(32))) = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
vector3f forward, side, up;
vec3f_sub_normalize(center3D[0], center3D[1], center3D[2],
eyePosition3D[0], eyePosition3D[1], eyePosition3D[2],
forward[0], forward[1], forward[2]);
//Side = forward x up
vec3f_cross(forward, upVector3D, side);
vec3f_normalize(side[0], side[1], side[2]);
//Recompute up as: up = side x forward
vec3f_cross(side, forward, up);
MatrixLookAt[0][0] = side[0];
MatrixLookAt[1][0] = side[1];
MatrixLookAt[2][0] = side[2];
MatrixLookAt[3][0] = 0;
MatrixLookAt[0][1] = up[0];
MatrixLookAt[1][1] = up[1];
MatrixLookAt[2][1] = up[2];
MatrixLookAt[3][1] = 0;
MatrixLookAt[0][2] = -forward[0];
MatrixLookAt[1][2] = -forward[1];
MatrixLookAt[2][2] = -forward[2];
MatrixLookAt[3][2] = 0;
MatrixLookAt[0][3] =
MatrixLookAt[1][3] =
MatrixLookAt[2][3] = 0;
MatrixLookAt[3][3] = 1;
// Does not modify internal Modelview matrix
mat_load(&MatrixLookAt);
mat_translate(-eyePosition3D[0], -eyePosition3D[1], -eyePosition3D[2]);
mat_apply(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
mat_store(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
}
void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez, GLfloat centerx,
GLfloat centery, GLfloat centerz, GLfloat upx, GLfloat upy,
GLfloat upz) {
vector3f eye = { eyex, eyey, eyez };
vector3f point = { centerx, centery, centerz };
vector3f up = { upx, upy, upz };
glhLookAtf2(eye, point, up);
}
void _applyRenderMatrix() {
mat_load(&SCREENVIEW_MATRIX);
mat_apply(stack_top(MATRIX_STACKS + (GL_PROJECTION & 0xF)));
mat_apply(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
mat_store(&RENDER_MATRIX);
}
void _matrixLoadRender() {
mat_load(&RENDER_MATRIX);
}
void _matrixLoadTexture() {
mat_load(stack_top(MATRIX_STACKS + (GL_TEXTURE & 0xF)));
}
void _matrixLoadModelView() {
mat_load(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
}
void _matrixLoadNormal() {
mat_load(&NORMAL_MATRIX);
}

View File

@ -72,6 +72,14 @@ void initAttributePointers();
void initContext();
void initLights();
void initImmediateMode();
void initMatrices();
void _matrixLoadNormal();
void _matrixLoadModelView();
void _matrixLoadTexture();
void _matrixLoadRender();
void _applyRenderMatrix();
GLubyte checkImmediateModeInactive(const char* func);
pvr_poly_cxt_t* getPVRContext();

View File

@ -164,7 +164,7 @@ GLboolean isLightEnabled(unsigned char light) {
static GLfloat CLEAR_COLOUR[3];
void initContext() {
void initContext() {
memset(&GL_CONTEXT, 0, sizeof(pvr_poly_cxt_t));
GL_CONTEXT.list_type = PVR_LIST_OP_POLY;

50
containers/stack.h Normal file
View File

@ -0,0 +1,50 @@
#ifndef STACK_H
#define STACK_H
#include <malloc.h>
#include <string.h>
typedef struct {
unsigned char* data;
unsigned int capacity;
unsigned int size;
unsigned int element_size;
} Stack;
void init_stack(Stack* stack, unsigned int element_size, unsigned int capacity) {
stack->size = 0;
stack->capacity = capacity;
stack->element_size = element_size;
stack->data = (unsigned char*) memalign(0x20, element_size * capacity);
}
void* stack_top(Stack* stack) {
return &stack->data[(stack->size - 1) * stack->element_size];
}
void* stack_replace(Stack* stack, const void* element) {
memcpy(stack->data + ((stack->size - 1) * stack->element_size), element, stack->element_size);
return stack_top(stack);
}
void* stack_push(Stack* stack, const void* element) {
if(stack->size + 1 == stack->capacity) {
return NULL;
}
memcpy(stack->data + (stack->size * stack->element_size), element, stack->element_size);
stack->size++;
return stack_top(stack);
}
void stack_pop(Stack* stack) {
if(stack->size == 0) {
return;
}
stack->size--;
}
#endif // STACK_H

View File

@ -362,8 +362,3 @@ void _glKosVertexComputeLighting(pvr_vertex_t *v, int verts) {
}
}
void _glKosLightTransformScreenSpace(float *xyz) {
_glKosMatrixApplyScreenSpace();
mat_trans_single(xyz[0], xyz[1], xyz[2]);
_glKosMatrixLoadRender();
}

View File

@ -1,413 +0,0 @@
/* KallistiGL for KallistiOS ##version##
libgl/gl-matrix.c
Copyright (C) 2013-2014 Josh Pearson
Copyright (C) 2014 Lawrence Sebald
Some functionality adapted from the original KOS libgl:
Copyright (C) 2001 Dan Potter
The GL matrix operations use the KOS SH4 matrix operations.
Basically, we keep two seperate matrix stacks:
1.) Internal GL API Matrix Stack ( screenview, modelview, etc. ) ( fixed stack size )
2.) External Matrix Stack for client to push / pop ( size of each stack is determined by MAX_MATRICES )
*/
#include <string.h>
#include "gl.h"
#include "glu.h"
#include "gl-api.h"
#include "gl-sh4.h"
/* This Matrix contains the GL Base Stack */
static matrix4f Matrix[GL_MATRIX_COUNT] __attribute__((aligned(32)));
static GLsizei MatrixMode = 0;
/* This Matrix contains the GL Push/Pop Stack ( fixed size per mode, 32 matrices )*/
static const GLsizei MAX_MATRICES = 32;
static matrix4f MatrixStack[GL_MATRIX_COUNT][32] __attribute__((aligned(32)));
static GLsizei MatrixStackPos[GL_MATRIX_COUNT];
/* Viewport mapping */
static GLfloat gl_viewport_scale[3], gl_viewport_offset[3];
/* Depth range */
static GLclampf gl_depthrange_near, gl_depthrange_far;
/* Viewport size */
static GLint gl_viewport_x1, gl_viewport_y1, gl_viewport_width, gl_viewport_height;
/* Frustum attributes */
typedef struct {
float left, right, bottom, top, znear, zfar;
} gl_frustum_t;
static gl_frustum_t gl_frustum;
/* Frustum Matrix */
static matrix4f FrustumMatrix __attribute__((aligned(32))) = {
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, -1.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f }
};
/* Ortho Matrix */
static matrix4f OrthoMatrix __attribute__((aligned(32))) = {
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
/* Matrix for user to submit externally, ensure 32byte allignment */
static matrix4f ml __attribute__((aligned(32)));
/* Look-At Matrix */
static matrix4f MatrixLookAt __attribute__((aligned(32))) = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
/* Modelview Rotation Matrix - Applied to Vertex Normal when Lighting is Enabled */
static matrix4f MatrixMdlRot __attribute__((aligned(32))) = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
void glMatrixMode(GLenum mode) {
if(mode >= GL_SCREENVIEW && mode <= GL_IDENTITY)
MatrixMode = mode;
}
void glPushMatrix() {
if(MatrixStackPos[MatrixMode] < MAX_MATRICES - 1) {
mat_load(Matrix + MatrixMode);
mat_store(&MatrixStack[MatrixMode][MatrixStackPos[MatrixMode]]);
++MatrixStackPos[MatrixMode];
}
}
void glPopMatrix() {
if(MatrixStackPos[MatrixMode]) {
--MatrixStackPos[MatrixMode];
mat_load(&MatrixStack[MatrixMode][MatrixStackPos[MatrixMode]]);
mat_store(Matrix + MatrixMode);
}
}
void glLoadIdentity() {
mat_load(Matrix + GL_IDENTITY);
mat_store(Matrix + MatrixMode);
if(MatrixMode == GL_MODELVIEW) {
mat_store(&MatrixMdlRot);
mat_store(&MatrixLookAt);
}
}
void glTranslatef(GLfloat x, GLfloat y, GLfloat z) {
mat_load(Matrix + MatrixMode);
mat_translate(x, y, z);
mat_store(Matrix + MatrixMode);
}
void glScalef(GLfloat x, GLfloat y, GLfloat z) {
mat_load(Matrix + MatrixMode);
mat_scale(x, y, z);
mat_store(Matrix + MatrixMode);
}
void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {
float r = DEG2RAD * -angle;
vec3f_normalize(x, y, z);
mat_load(Matrix + MatrixMode);
mat_rotate(r * x, r * y, r * z);
mat_store(Matrix + MatrixMode);
if(MatrixMode == GL_MODELVIEW) {
mat_load(&MatrixMdlRot);
mat_rotate(r * x, r * y, r * z);
mat_store(&MatrixMdlRot);
}
}
/* Load an arbitrary matrix */
void glLoadMatrixf(const GLfloat *m) {
memcpy(ml, m, sizeof(matrix4f));
mat_load(&ml);
mat_store(Matrix + MatrixMode);
}
/* Load an arbitrary transposed matrix */
void glLoadTransposeMatrixf(const GLfloat *m) {
ml[0][0] = m[0];
ml[0][1] = m[4];
ml[0][2] = m[8];
ml[0][3] = m[12];
ml[1][0] = m[1];
ml[1][1] = m[5];
ml[1][2] = m[9];
ml[1][3] = m[13];
ml[2][0] = m[2];
ml[2][1] = m[6];
ml[2][2] = m[10];
ml[2][3] = m[14];
ml[3][0] = m[3];
ml[3][1] = m[7];
ml[3][2] = m[11];
ml[3][3] = m[15];
mat_load(&ml);
mat_store(Matrix + MatrixMode);
}
/* Multiply the current matrix by an arbitrary matrix */
void glMultMatrixf(const GLfloat *m) {
memcpy(ml, m, sizeof(matrix4f));
mat_load(Matrix + MatrixMode);
mat_apply(&ml);
mat_store(Matrix + MatrixMode);
}
/* Multiply the current matrix by an arbitrary transposed matrix */
void glMultTransposeMatrixf(const GLfloat *m) {
ml[0][0] = m[0];
ml[0][1] = m[4];
ml[0][2] = m[8];
ml[0][3] = m[12];
ml[1][0] = m[1];
ml[1][1] = m[5];
ml[1][2] = m[9];
ml[1][3] = m[13];
ml[2][0] = m[2];
ml[2][1] = m[6];
ml[2][2] = m[10];
ml[2][3] = m[14];
ml[3][0] = m[3];
ml[3][1] = m[7];
ml[3][2] = m[11];
ml[3][3] = m[15];
mat_load(Matrix + MatrixMode);
mat_apply(&ml);
mat_store(Matrix + MatrixMode);
}
/* Set the depth range */
void glDepthRange(GLclampf n, GLclampf f) {
/* clamp the values... */
if(n < 0.0f) n = 0.0f;
else if(n > 1.0f) n = 1.0f;
if(f < 0.0f) f = 0.0f;
else if(f > 1.0f) f = 1.0f;
gl_depthrange_near = n;
gl_depthrange_far = f;
/* Adjust the viewport scale and offset for Z */
gl_viewport_scale[2] = ((f - n) / 2.0f);
gl_viewport_offset[2] = (n + f) / 2.0f;
}
/* Set the GL viewport */
void glViewport(GLint x, GLint y, GLsizei width, GLsizei height) {
gl_viewport_x1 = x;
gl_viewport_y1 = y;
gl_viewport_width = width;
gl_viewport_height = height;
/* Calculate the viewport scale and offset */
gl_viewport_scale[0] = (GLfloat)width / 2.0f;
gl_viewport_offset[0] = gl_viewport_scale[0] + (GLfloat)x;
gl_viewport_scale[1] = (GLfloat)height / 2.0f;
gl_viewport_offset[1] = gl_viewport_scale[1] + (GLfloat)y;
gl_viewport_scale[2] = (gl_depthrange_far - gl_depthrange_near) / 2.0f;
gl_viewport_offset[2] = (gl_depthrange_near + gl_depthrange_far) / 2.0f;
gl_viewport_offset[2] += 0.0001f;
/* Set the Screenview Matrix based on the viewport */
Matrix[GL_SCREENVIEW][0][0] = gl_viewport_scale[0];
Matrix[GL_SCREENVIEW][1][1] = -gl_viewport_scale[1];
Matrix[GL_SCREENVIEW][2][2] = 1;
Matrix[GL_SCREENVIEW][3][0] = gl_viewport_offset[0];
Matrix[GL_SCREENVIEW][3][1] = vid_mode->height - gl_viewport_offset[1];
}
/* Set the GL frustum */
void glFrustum(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
gl_frustum.left = left;
gl_frustum.right = right;
gl_frustum.bottom = bottom;
gl_frustum.top = top;
gl_frustum.znear = znear;
gl_frustum.zfar = zfar;
FrustumMatrix[0][0] = (2.0f * znear) / (right - left);
FrustumMatrix[2][0] = (right + left) / (right - left);
FrustumMatrix[1][1] = (2.0f * znear) / (top - bottom);
FrustumMatrix[2][1] = (top + bottom) / (top - bottom);
FrustumMatrix[2][2] = zfar / (zfar - znear);
FrustumMatrix[3][2] = -(zfar * znear) / (zfar - znear);
mat_load(Matrix + MatrixMode);
mat_apply(&FrustumMatrix);
mat_store(Matrix + MatrixMode);
}
/* Ortho */
void glOrtho(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
OrthoMatrix[0][0] = 2.0f / (right - left);
OrthoMatrix[1][1] = 2.0f / (top - bottom);
OrthoMatrix[2][2] = -2.0f / (zfar - znear);
OrthoMatrix[3][0] = -(right + left) / (right - left);;
OrthoMatrix[3][1] = -(top + bottom) / (top - bottom);
OrthoMatrix[3][2] = -(zfar + znear) / (zfar - znear);
mat_load(Matrix + MatrixMode);
mat_apply(&OrthoMatrix);
mat_store(Matrix + MatrixMode);
}
/* Set the Perspective */
void gluPerspective(GLfloat angle, GLfloat aspect,
GLfloat znear, GLfloat zfar) {
GLfloat xmin, xmax, ymin, ymax;
ymax = znear * ftan(angle * F_PI / 360.0f);
ymin = -ymax;
xmin = ymin * aspect;
xmax = ymax * aspect;
glFrustum(xmin, xmax, ymin, ymax, znear, zfar);
}
/* Vector Cross Product - Used by glhLookAtf2 */
void vec3f_cross(vector3f v1, vector3f v2, vector3f result) {
result[0] = v1[1] * v2[2] - v1[2] * v2[1];
result[1] = v1[2] * v2[0] - v1[0] * v2[2];
result[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
/* glhLookAtf2 adapted from http://www.opengl.org/wiki/GluLookAt_code */
void glhLookAtf2(vector3f eyePosition3D,
vector3f center3D,
vector3f upVector3D) {
vector3f forward, side, up;
_glKosSetEyePosition(eyePosition3D);
vec3f_sub_normalize(center3D[0], center3D[1], center3D[2],
eyePosition3D[0], eyePosition3D[1], eyePosition3D[2],
forward[0], forward[1], forward[2]);
//Side = forward x up
vec3f_cross(forward, upVector3D, side);
vec3f_normalize(side[0], side[1], side[2]);
//Recompute up as: up = side x forward
vec3f_cross(side, forward, up);
MatrixLookAt[0][0] = side[0];
MatrixLookAt[1][0] = side[1];
MatrixLookAt[2][0] = side[2];
MatrixLookAt[3][0] = 0;
MatrixLookAt[0][1] = up[0];
MatrixLookAt[1][1] = up[1];
MatrixLookAt[2][1] = up[2];
MatrixLookAt[3][1] = 0;
MatrixLookAt[0][2] = -forward[0];
MatrixLookAt[1][2] = -forward[1];
MatrixLookAt[2][2] = -forward[2];
MatrixLookAt[3][2] = 0;
MatrixLookAt[0][3] =
MatrixLookAt[1][3] =
MatrixLookAt[2][3] = 0;
MatrixLookAt[3][3] = 1;
// Does not modify internal Modelview matrix
mat_load(&MatrixLookAt);
mat_translate(-eyePosition3D[0], -eyePosition3D[1], -eyePosition3D[2]);
mat_apply(Matrix + GL_MODELVIEW);
mat_store(Matrix + GL_MODELVIEW);
}
void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez, GLfloat centerx,
GLfloat centery, GLfloat centerz, GLfloat upx, GLfloat upy,
GLfloat upz) {
vector3f eye = { eyex, eyey, eyez };
vector3f point = { centerx, centery, centerz };
vector3f up = { upx, upy, upz };
glhLookAtf2(eye, point, up);
}
void _glKosMatrixApplyRender() {
mat_load(Matrix + GL_SCREENVIEW);
mat_apply(Matrix + GL_PROJECTION);
mat_apply(Matrix + GL_MODELVIEW);
mat_store(Matrix + GL_RENDER);
}
void _glKosMatrixLoadRender() {
mat_load(Matrix + GL_RENDER);
}
void _glKosMatrixLoadTexture() {
mat_load(Matrix + GL_TEXTURE);
}
void _glKosMatrixLoadModelView() {
mat_load(Matrix + GL_MODELVIEW);
}
void _glKosMatrixLoadModelRot() {
mat_load(&MatrixMdlRot);
}
void _glKosMatrixApplyScreenSpace() {
mat_load(Matrix + GL_SCREENVIEW);
mat_apply(Matrix + GL_PROJECTION);
mat_apply(&MatrixLookAt);
}
void _glKosInitMatrix() {
mat_identity();
mat_store(Matrix + GL_SCREENVIEW);
mat_store(Matrix + GL_PROJECTION);
mat_store(Matrix + GL_MODELVIEW);
mat_store(Matrix + GL_TEXTURE);
mat_store(Matrix + GL_IDENTITY);
mat_store(Matrix + GL_RENDER);
int i;
for(i = 0; i < GL_MATRIX_COUNT; i++)
MatrixStackPos[i] = 0;
glDepthRange(0.0f, 1.0f);
glViewport(0, 0, vid_mode->width, vid_mode->height);
}
void glKosGetMatrix(GLenum mode, GLfloat *params) {
if(mode < GL_SCREENVIEW || mode > GL_RENDER)
*params = (GLfloat)GL_INVALID_ENUM;
memcpy(params, Matrix + mode, sizeof(GLfloat) * 16);
}

View File

@ -56,13 +56,9 @@ __BEGIN_DECLS
/* Matrix modes */
#define GL_MATRIX_MODE 0x0BA0
#define GL_SCREENVIEW 0x00
#define GL_MODELVIEW 0x01
#define GL_PROJECTION 0x02
#define GL_TEXTURE 0x03
#define GL_IDENTITY 0x04
#define GL_RENDER 0x05
#define GL_MATRIX_COUNT 0x06
#define GL_MODELVIEW 0x1700
#define GL_PROJECTION 0x1701
#define GL_TEXTURE 0x1702
#define GL_MODELVIEW_MATRIX 0x0BA6
#define GL_PROJECTION_MATRIX 0x0BA7