GLdc/GL/draw.c
2019-03-19 13:35:02 +00:00

1238 lines
38 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include "../include/gl.h"
#include "../include/glext.h"
#include "private.h"
#include "profiler.h"
static AttribPointer VERTEX_POINTER;
static AttribPointer UV_POINTER;
static AttribPointer ST_POINTER;
static AttribPointer NORMAL_POINTER;
static AttribPointer DIFFUSE_POINTER;
static GLuint ENABLED_VERTEX_ATTRIBUTES = 0;
static GLubyte ACTIVE_CLIENT_TEXTURE = 0;
void _glInitAttributePointers() {
TRACE();
VERTEX_POINTER.ptr = NULL;
VERTEX_POINTER.stride = 0;
VERTEX_POINTER.type = GL_FLOAT;
VERTEX_POINTER.size = 4;
DIFFUSE_POINTER.ptr = NULL;
DIFFUSE_POINTER.stride = 0;
DIFFUSE_POINTER.type = GL_FLOAT;
DIFFUSE_POINTER.size = 4;
UV_POINTER.ptr = NULL;
UV_POINTER.stride = 0;
UV_POINTER.type = GL_FLOAT;
UV_POINTER.size = 4;
ST_POINTER.ptr = NULL;
ST_POINTER.stride = 0;
ST_POINTER.type = GL_FLOAT;
ST_POINTER.size = 4;
NORMAL_POINTER.ptr = NULL;
NORMAL_POINTER.stride = 0;
NORMAL_POINTER.type = GL_FLOAT;
NORMAL_POINTER.size = 3;
}
static inline GLuint byte_size(GLenum type) {
switch(type) {
case GL_BYTE: return sizeof(GLbyte);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
case GL_SHORT: return sizeof(GLshort);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_INT: return sizeof(GLint);
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_DOUBLE: return sizeof(GLdouble);
case GL_FLOAT:
default: return sizeof(GLfloat);
}
}
typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in);
typedef void (*ByteParseFunc)(GLubyte* out, const GLubyte* in);
typedef void (*PolyBuildFunc)(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i);
static void _readVertexData3f3f(const float* input, GLuint count, GLubyte stride, float* output) {
const float* end = (float*) (((GLubyte*) input) + (count * stride));
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
input = (float*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData3us3f(const GLushort* input, GLuint count, GLubyte stride, float* output) {
const GLushort* end = (GLushort*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
input = (GLushort*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData3ui3f(const GLuint* input, GLuint count, GLubyte stride, float* output) {
const GLuint* end = (GLuint*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
input = (GLuint*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData3ub3f(const GLubyte* input, GLuint count, GLubyte stride, float* output) {
const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f;
const GLubyte* end = ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE;
input += stride;
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2f2f(const float* input, GLuint count, GLubyte stride, float* output) {
const float* end = (float*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
input = (float*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2f3f(const float* input, GLuint count, GLubyte stride, float* output) {
const float* end = (float*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
input = (float*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2ub3f(const GLubyte* input, GLuint count, GLubyte stride, float* output) {
const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f;
const GLubyte* end = ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = 0.0f;
input += stride;
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2us3f(const GLushort* input, GLuint count, GLubyte stride, float* output) {
const GLushort* end = (GLushort*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
input = (GLushort*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2us2f(const GLushort* input, GLuint count, GLubyte stride, float* output) {
const GLushort* end = (GLushort*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
input = (GLushort*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2ui2f(const GLuint* input, GLuint count, GLubyte stride, float* output) {
const GLuint* end = (GLuint*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
input = (GLuint*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2ub2f(const GLubyte* input, GLuint count, GLubyte stride, float* output) {
const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f;
const GLubyte* end = (GLubyte*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
input = (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData2ui3f(const GLuint* input, GLuint count, GLubyte stride, float* output) {
const GLuint* end = (GLuint*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
input = (GLuint*) (((GLubyte*) input) + stride);
output = (float*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData4ubARGB(const GLubyte* input, GLuint count, GLubyte stride, GLubyte* output) {
const GLubyte* end = ((GLubyte*) input) + (count * stride);
while(input < end) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = input[3];
input = (GLubyte*) (((GLubyte*) input) + stride);
output = (GLubyte*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData4fARGB(const float* input, GLuint count, GLubyte stride, GLubyte* output) {
const float* end = (float*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[R8IDX] = (GLubyte) (input[0] * 255.0f);
output[G8IDX] = (GLubyte) (input[1] * 255.0f);
output[B8IDX] = (GLubyte) (input[2] * 255.0f);
output[A8IDX] = (GLubyte) (input[3] * 255.0f);
input = (float*) (((GLubyte*) input) + stride);
output = (GLubyte*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData3fARGB(const float* input, GLuint count, GLubyte stride, GLubyte* output) {
const float* end = (float*) ((GLubyte*) input) + (count * stride);
while(input < end) {
output[R8IDX] = (GLubyte) (input[0] * 255.0f);
output[G8IDX] = (GLubyte) (input[1] * 255.0f);
output[B8IDX] = (GLubyte) (input[2] * 255.0f);
output[A8IDX] = 1.0f;
input = (float*) (((GLubyte*) input) + stride);
output = (GLubyte*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _readVertexData3ubARGB(const GLubyte* input, GLuint count, GLubyte stride, GLubyte* output) {
const GLubyte* end = ((GLubyte*) input) + (count * stride);
while(input < end) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = 1.0f;
input = (((GLubyte*) input) + stride);
output = (GLubyte*) (((GLubyte*) output) + sizeof(ClipVertex));
}
}
static void _fillWithNegZ(GLuint count, GLfloat* output) {
const GLfloat* end = (GLfloat*) ((GLubyte*) output) + (sizeof(ClipVertex) * count);
while(output < end) {
output[0] = output[1] = 0.0f;
output[2] = -1.0f;
output += sizeof(ClipVertex);
}
}
static void _fillWhiteARGB(GLuint count, GLubyte* output) {
const GLubyte* end = output + (sizeof(ClipVertex) * count);
while(output < end) {
output[R8IDX] = 255;
output[G8IDX] = 255;
output[B8IDX] = 255;
output[A8IDX] = 255;
output += sizeof(ClipVertex);
}
}
static void _fillZero2f(GLuint count, GLfloat* output) {
const GLfloat* end = output + (sizeof(ClipVertex) * count);
while(output < end) {
output[0] = output[1] = 0.0f;
output += sizeof(ClipVertex);
}
}
static void _readVertexData3usARGB(const GLushort* input, GLuint count, GLubyte stride, GLubyte* output) {
assert(0 && "Not Implemented");
}
static void _readVertexData3uiARGB(const GLuint* input, GLuint count, GLubyte stride, GLubyte* output) {
assert(0 && "Not Implemented");
}
static void _readVertexData4usARGB(const GLushort* input, GLuint count, GLubyte stride, GLubyte* output) {
assert(0 && "Not Implemented");
}
static void _readVertexData4uiARGB(const GLuint* input, GLuint count, GLubyte stride, GLubyte* output) {
assert(0 && "Not Implemented");
}
GLuint _glGetEnabledAttributes() {
return ENABLED_VERTEX_ATTRIBUTES;
}
AttribPointer* _glGetVertexAttribPointer() {
return &VERTEX_POINTER;
}
AttribPointer* _glGetDiffuseAttribPointer() {
return &DIFFUSE_POINTER;
}
AttribPointer* _glGetNormalAttribPointer() {
return &NORMAL_POINTER;
}
AttribPointer* _glGetUVAttribPointer() {
return &UV_POINTER;
}
AttribPointer* _glGetSTAttribPointer() {
return &ST_POINTER;
}
typedef GLuint (*IndexParseFunc)(const GLubyte* in);
static inline GLuint _parseUByteIndex(const GLubyte* in) {
return (GLuint) *in;
}
static inline GLuint _parseUIntIndex(const GLubyte* in) {
return *((GLuint*) in);
}
static inline GLuint _parseUShortIndex(const GLubyte* in) {
return *((GLshort*) in);
}
static inline IndexParseFunc _calcParseIndexFunc(GLenum type) {
switch(type) {
case GL_UNSIGNED_BYTE:
return &_parseUByteIndex;
break;
case GL_UNSIGNED_INT:
return &_parseUIntIndex;
break;
case GL_UNSIGNED_SHORT:
default:
break;
}
return &_parseUShortIndex;
}
/* There was a bug in this macro that shipped with Kos
* which has now been fixed. But just in case...
*/
#undef mat_trans_single3_nodiv
#define mat_trans_single3_nodiv(x, y, z) { \
register float __x __asm__("fr12") = (x); \
register float __y __asm__("fr13") = (y); \
register float __z __asm__("fr14") = (z); \
__asm__ __volatile__( \
"fldi1 fr15\n" \
"ftrv xmtrx, fv12\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr15"); \
x = __x; y = __y; z = __z; \
}
/* FIXME: Is this right? Shouldn't it be fr12->15? */
#undef mat_trans_normal3
#define mat_trans_normal3(x, y, z) { \
register float __x __asm__("fr8") = (x); \
register float __y __asm__("fr9") = (y); \
register float __z __asm__("fr10") = (z); \
__asm__ __volatile__( \
"fldi0 fr11\n" \
"ftrv xmtrx, fv8\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr11"); \
x = __x; y = __y; z = __z; \
}
static inline void transformToEyeSpace(GLfloat* point) {
_glMatrixLoadModelView();
mat_trans_single3_nodiv(point[0], point[1], point[2]);
}
static inline void transformNormalToEyeSpace(GLfloat* normal) {
_glMatrixLoadNormal();
mat_trans_normal3(normal[0], normal[1], normal[2]);
}
#define INT_CAST(a) *((int*)&(a))
#define XORSWAP_UNSAFE(a, b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define swapVertex(a, b) \
do { \
XORSWAP_UNSAFE(a->flags, b->flags); \
XORSWAP_UNSAFE(INT_CAST(a->xyz[0]), INT_CAST(b->xyz[0])); \
XORSWAP_UNSAFE(INT_CAST(a->xyz[1]), INT_CAST(b->xyz[1])); \
XORSWAP_UNSAFE(INT_CAST(a->xyz[2]), INT_CAST(b->xyz[2])); \
XORSWAP_UNSAFE(INT_CAST(a->uv[0]), INT_CAST(b->uv[0])); \
XORSWAP_UNSAFE(INT_CAST(a->uv[1]), INT_CAST(b->uv[1])); \
XORSWAP_UNSAFE(a->bgra[0], b->bgra[0]); \
XORSWAP_UNSAFE(a->bgra[1], b->bgra[1]); \
XORSWAP_UNSAFE(a->bgra[2], b->bgra[2]); \
XORSWAP_UNSAFE(a->bgra[3], b->bgra[3]); \
XORSWAP_UNSAFE(a->oargb, b->oargb); \
XORSWAP_UNSAFE(INT_CAST(a->nxyz[0]), INT_CAST(b->nxyz[0])); \
XORSWAP_UNSAFE(INT_CAST(a->nxyz[1]), INT_CAST(b->nxyz[1])); \
XORSWAP_UNSAFE(INT_CAST(a->nxyz[2]), INT_CAST(b->nxyz[2])); \
XORSWAP_UNSAFE(INT_CAST(a->w), INT_CAST(b->w)); \
XORSWAP_UNSAFE(INT_CAST(a->st[0]), INT_CAST(b->st[0])); \
XORSWAP_UNSAFE(INT_CAST(a->st[1]), INT_CAST(b->st[1])); \
} while(0)
static inline void genTriangles(ClipVertex* output, GLuint count) {
const ClipVertex* end = output + count;
ClipVertex* it = output + 2;
while(it < end) {
it->flags = PVR_CMD_VERTEX_EOL;
it += 3;
}
}
static inline void genQuads(ClipVertex* output, GLuint count) {
ClipVertex* previous;
ClipVertex* this = output + 3;
const ClipVertex* end = output + count;
while(this < end) {
previous = this - 1;
swapVertex(previous, this);
this->flags = PVR_CMD_VERTEX_EOL;
this += 4;
}
}
static void genTriangleStrip(ClipVertex* output, GLuint count) {
output[count - 1].flags = PVR_CMD_VERTEX_EOL;
}
#define MAX_POLYGON_SIZE 32
static void genTriangleFan(ClipVertex* output, GLuint count) {
assert(count < MAX_POLYGON_SIZE);
static ClipVertex buffer[MAX_POLYGON_SIZE];
if(count <= 3){
swapVertex(&output[1], &output[2]);
output[2].flags = PVR_CMD_VERTEX_EOL;
return;
}
memcpy(buffer, output, sizeof(ClipVertex) * count);
// First 3 vertices are in the right place, just end early
output[2].flags = PVR_CMD_VERTEX_EOL;
GLsizei i = 3, target = 3;
ClipVertex* first = &output[0];
for(; i < count; ++i) {
output[target++] = *first;
output[target++] = buffer[i - 1];
output[target] = buffer[i];
output[target++].flags = PVR_CMD_VERTEX_EOL;
}
}
static inline void _readPositionData(const GLuint first, const GLuint count, ClipVertex* output) {
const GLubyte vstride = (VERTEX_POINTER.stride) ? VERTEX_POINTER.stride : VERTEX_POINTER.size * byte_size(VERTEX_POINTER.type);
const void* vptr = ((GLubyte*) VERTEX_POINTER.ptr + (first * vstride));
if(VERTEX_POINTER.size == 3) {
switch(VERTEX_POINTER.type) {
case GL_FLOAT:
_readVertexData3f3f(vptr, count, vstride, output[0].xyz);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData3ub3f(vptr, count, vstride, output[0].xyz);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData3us3f(vptr, count, vstride, output[0].xyz);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData3ui3f(vptr, count, vstride, output[0].xyz);
break;
default:
assert(0 && "Not Implemented");
}
} else if(VERTEX_POINTER.size == 2) {
switch(VERTEX_POINTER.type) {
case GL_FLOAT:
_readVertexData2f3f(vptr, count, vstride, output[0].xyz);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData2ub3f(vptr, count, vstride, output[0].xyz);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData2us3f(vptr, count, vstride, output[0].xyz);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData2ui3f(vptr, count, vstride, output[0].xyz);
break;
default:
assert(0 && "Not Implemented");
}
} else {
assert(0 && "Not Implemented");
}
}
static inline void _readUVData(const GLuint first, const GLuint count, ClipVertex* output) {
if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) {
_fillZero2f(count, output->uv);
return;
}
const GLubyte uvstride = (UV_POINTER.stride) ? UV_POINTER.stride : UV_POINTER.size * byte_size(UV_POINTER.type);
const void* uvptr = ((GLubyte*) UV_POINTER.ptr + (first * uvstride));
if(UV_POINTER.size == 2) {
switch(UV_POINTER.type) {
case GL_FLOAT:
_readVertexData2f2f(uvptr, count, uvstride, output[0].uv);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData2ub2f(uvptr, count, uvstride, output[0].uv);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData2us2f(uvptr, count, uvstride, output[0].uv);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData2ui2f(uvptr, count, uvstride, output[0].uv);
break;
default:
assert(0 && "Not Implemented");
}
} else {
assert(0 && "Not Implemented");
}
}
static inline void _readSTData(const GLuint first, const GLuint count, ClipVertex* output) {
if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) {
_fillZero2f(count, output->st);
return;
}
const GLubyte ststride = (ST_POINTER.stride) ? ST_POINTER.stride : ST_POINTER.size * byte_size(ST_POINTER.type);
const void* stptr = ((GLubyte*) ST_POINTER.ptr + (first * ststride));
if(ST_POINTER.size == 2) {
switch(ST_POINTER.type) {
case GL_FLOAT:
_readVertexData2f2f(stptr, count, ststride, output[0].st);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData2ub2f(stptr, count, ststride, output[0].st);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData2us2f(stptr, count, ststride, output[0].st);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData2ui2f(stptr, count, ststride, output[0].st);
break;
default:
assert(0 && "Not Implemented");
}
} else {
assert(0 && "Not Implemented");
}
}
static inline void _readNormalData(const GLuint first, const GLuint count, ClipVertex* output) {
if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) {
_fillWithNegZ(count, output->nxyz);
return;
}
const GLuint nstride = (NORMAL_POINTER.stride) ? NORMAL_POINTER.stride : NORMAL_POINTER.size * byte_size(NORMAL_POINTER.type);
const void* nptr = ((GLubyte*) NORMAL_POINTER.ptr + (first * nstride));
if(NORMAL_POINTER.size == 3) {
switch(NORMAL_POINTER.type) {
case GL_FLOAT:
_readVertexData3f3f(nptr, count, nstride, output[0].nxyz);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData3ub3f(nptr, count, nstride, output[0].nxyz);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData3us3f(nptr, count, nstride, output[0].nxyz);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData3ui3f(nptr, count, nstride, output[0].nxyz);
break;
default:
assert(0 && "Not Implemented");
}
} else {
assert(0 && "Not Implemented");
}
}
static inline void _readDiffuseData(const GLuint first, const GLuint count, ClipVertex* output) {
if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) {
/* Just fill the whole thing white if the attribute is disabled */
_fillWhiteARGB(count, output[0].bgra);
return;
}
const GLubyte cstride = (DIFFUSE_POINTER.stride) ? DIFFUSE_POINTER.stride : DIFFUSE_POINTER.size * byte_size(DIFFUSE_POINTER.type);
const void* cptr = ((GLubyte*) DIFFUSE_POINTER.ptr + (first * cstride));
if(DIFFUSE_POINTER.size == 3) {
switch(DIFFUSE_POINTER.type) {
case GL_FLOAT:
_readVertexData3fARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData3ubARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData3usARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData3uiARGB(cptr, count, cstride, output[0].bgra);
break;
default:
assert(0 && "Not Implemented");
}
} else if(DIFFUSE_POINTER.size == 4) {
switch(DIFFUSE_POINTER.type) {
case GL_FLOAT:
_readVertexData4fARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
_readVertexData4ubARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
_readVertexData4usARGB(cptr, count, cstride, output[0].bgra);
break;
case GL_INT:
case GL_UNSIGNED_INT:
_readVertexData4uiARGB(cptr, count, cstride, output[0].bgra);
break;
default:
assert(0 && "Not Implemented");
}
} else {
assert(0 && "Not Implemented");
}
}
static void generate(ClipVertex* output, const GLenum mode, const GLsizei first, const GLuint count,
const GLubyte* indices, const GLenum type, const GLboolean doTexture, const GLboolean doMultitexture, const GLboolean doLighting) {
/* Read from the client buffers and generate an array of ClipVertices */
const GLsizei istride = byte_size(type);
ClipVertex* it;
const ClipVertex* end;
if(!indices) {
_readPositionData(first, count, output);
_readDiffuseData(first, count, output);
if(doTexture) _readUVData(first, count, output);
if(doLighting) _readNormalData(first, count, output);
if(doTexture && doMultitexture) _readSTData(first, count, output);
it = output;
end = output + count;
while(it < end) {
(it++)->flags = PVR_CMD_VERTEX;
}
// Drawing arrays
switch(mode) {
case GL_TRIANGLES:
genTriangles(output, count);
break;
case GL_QUADS:
genQuads(output, count);
break;
case GL_POLYGON:
case GL_TRIANGLE_FAN:
genTriangleFan(output, count);
break;
case GL_TRIANGLE_STRIP:
genTriangleStrip(output, count);
break;
default:
assert(0 && "Not Implemented");
}
} else {
const IndexParseFunc indexFunc = _calcParseIndexFunc(type);
it = output;
end = output + count;
GLuint j;
const GLubyte* idx = indices;
while(it < end) {
j = indexFunc(idx);
_readPositionData(j, 1, it);
_readDiffuseData(j, 1, it);
if(doTexture) _readUVData(j, 1, it);
if(doLighting) _readNormalData(j, 1, it);
if(doTexture && doMultitexture) _readSTData(j, 1, it);
++it;
idx += istride;
}
it = output;
while(it < end) {
(it++)->flags = PVR_CMD_VERTEX;
}
// Drawing arrays
switch(mode) {
case GL_TRIANGLES:
genTriangles(output, count);
break;
case GL_QUADS:
genQuads(output, count);
break;
case GL_POLYGON:
case GL_TRIANGLE_FAN:
genTriangleFan(output, count);
break;
case GL_TRIANGLE_STRIP:
genTriangleStrip(output, count);
break;
default:
assert(0 && "Not Implemented");
}
}
}
static void transform(ClipVertex* output, const GLuint count) {
/* Perform modelview transform, storing W */
ClipVertex* vertex = output;
_glApplyRenderMatrix(); /* Apply the Render Matrix Stack */
GLsizei i = count;
while(i--) {
register float __x __asm__("fr12") = (vertex->xyz[0]);
register float __y __asm__("fr13") = (vertex->xyz[1]);
register float __z __asm__("fr14") = (vertex->xyz[2]);
register float __w __asm__("fr15");
__asm__ __volatile__(
"fldi1 fr15\n"
"ftrv xmtrx,fv12\n"
: "=f" (__x), "=f" (__y), "=f" (__z), "=f" (__w)
: "0" (__x), "1" (__y), "2" (__z), "3" (__w)
);
vertex->xyz[0] = __x;
vertex->xyz[1] = __y;
vertex->xyz[2] = __z;
vertex->w = __w;
++vertex;
}
}
static GLsizei clip(AlignedVector* polylist, uint32_t offset, const GLuint count) {
/* Perform clipping, generating new vertices as necessary */
clipTriangleStrip2(polylist, offset, _glGetShadeModel() == GL_FLAT);
/* List size, minus the original offset (which includes the header), minus the header */
return polylist->size - offset - 1;
}
static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) {
uint8_t* dataIn = (uint8_t*) xyz;
uint8_t* dataOut = (uint8_t*) xyzOut;
uint32_t i = count;
while(i--) {
float* in = (float*) dataIn;
float* out = (float*) dataOut;
mat_trans_single3_nodiv_nomod(in[0], in[1], in[2], out[0], out[1], out[2]);
dataIn += inStride;
dataOut += outStride;
}
}
static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) {
uint8_t* dataIn = (uint8_t*) xyz;
uint8_t* dataOut = (uint8_t*) xyzOut;
uint32_t i = count;
while(i--) {
float* in = (float*) dataIn;
float* out = (float*) dataOut;
mat_trans_normal3_nomod(in[0], in[1], in[2], out[0], out[1], out[2]);
dataIn += inStride;
dataOut += outStride;
}
}
static void light(ClipVertex* output, const GLuint count) {
if(!_glIsLightingEnabled()) {
return;
}
typedef struct {
float xyz[3];
float n[3];
} EyeSpaceData;
static AlignedVector* eye_space_data = NULL;
if(!eye_space_data) {
eye_space_data = (AlignedVector*) malloc(sizeof(AlignedVector));
aligned_vector_init(eye_space_data, sizeof(EyeSpaceData));
}
aligned_vector_resize(eye_space_data, count);
/* Perform lighting calculations and manipulate the colour */
ClipVertex* vertex = output;
EyeSpaceData* eye_space = (EyeSpaceData*) eye_space_data->data;
_glMatrixLoadModelView();
mat_transform3(vertex->xyz, eye_space->xyz, count, sizeof(ClipVertex), sizeof(EyeSpaceData));
_glMatrixLoadNormal();
mat_transform_normal3(vertex->nxyz, eye_space->n, count, sizeof(ClipVertex), sizeof(EyeSpaceData));
GLsizei i;
EyeSpaceData* ES = aligned_vector_at(eye_space_data, 0);
for(i = 0; i < count; ++i, ++vertex, ++ES) {
/* We ignore diffuse colour when lighting is enabled. If GL_COLOR_MATERIAL is enabled
* then the lighting calculation should possibly take it into account */
GLfloat total [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLubyte j;
for(j = 0; j < MAX_LIGHTS; ++j) {
if(_glIsLightEnabled(j)) {
_glCalculateLightingContribution(j, ES->xyz, ES->n, vertex->bgra, to_add);
total[0] += to_add[0];
total[1] += to_add[1];
total[2] += to_add[2];
total[3] += to_add[3];
}
}
vertex->bgra[A8IDX] = (GLubyte) (255.0f * fminf(total[3], 1.0f));
vertex->bgra[R8IDX] = (GLubyte) (255.0f * fminf(total[0], 1.0f));
vertex->bgra[G8IDX] = (GLubyte) (255.0f * fminf(total[1], 1.0f));
vertex->bgra[B8IDX] = (GLubyte) (255.0f * fminf(total[2], 1.0f));
}
}
static void divide(ClipVertex* output, const GLuint count) {
/* Perform perspective divide on each vertex */
ClipVertex* vertex = output;
GLsizei i = count;
while(i--) {
vertex->xyz[2] = 1.0f / vertex->w;
vertex->xyz[0] *= vertex->xyz[2];
vertex->xyz[1] *= vertex->xyz[2];
++vertex;
}
}
static void push(PVRHeader* header, ClipVertex* output, const GLuint count, PolyList* activePolyList, GLshort textureUnit) {
// Compile the header
pvr_poly_cxt_t cxt = *_glGetPVRContext();
cxt.list_type = activePolyList->list_type;
_glUpdatePVRTextureContext(&cxt, textureUnit);
pvr_poly_compile(&header->hdr, &cxt);
/* Post-process the vertex list */
ClipVertex* vout = output;
GLuint i = count;
while(i--) {
vout->oargb = 0;
}
}
#define DEBUG_CLIPPING 0
static void submitVertices(GLenum mode, GLsizei first, GLuint count, GLenum type, const GLvoid* indices) {
/* Do nothing if vertices aren't enabled */
if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) {
return;
}
GLboolean doMultitexture, doTexture, doLighting;
GLint activeTexture;
glGetIntegerv(GL_ACTIVE_TEXTURE_ARB, &activeTexture);
glActiveTextureARB(GL_TEXTURE0);
glGetBooleanv(GL_TEXTURE_2D, &doTexture);
glActiveTextureARB(GL_TEXTURE1);
glGetBooleanv(GL_TEXTURE_2D, &doMultitexture);
doLighting = _glIsLightingEnabled();
glActiveTextureARB(activeTexture);
profiler_push(__func__);
PolyList* activeList = _glActivePolyList();
/* Make room in the list buffer */
GLsizei spaceNeeded = (mode == GL_POLYGON || mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count;
ClipVertex* start = aligned_vector_extend(&activeList->vector, spaceNeeded + 1);
/* Store a pointer to the header for later */
PVRHeader* header = (PVRHeader*) start++;
/* We store an offset to the first ClipVertex because clipping may generate more
* vertices, which may cause a realloc and thus invalidate start and header
* we use this startOffset to reset those pointers after clipping */
uint32_t startOffset = start - (ClipVertex*) activeList->vector.data;
profiler_checkpoint("allocate");
generate(start, mode, first, count, (GLubyte*) indices, type, doTexture, doMultitexture, doLighting);
profiler_checkpoint("generate");
light(start, spaceNeeded);
profiler_checkpoint("light");
transform(start, spaceNeeded);
profiler_checkpoint("transform");
if(_glIsClippingEnabled()) {
uint32_t offset = ((start - 1) - (ClipVertex*) activeList->vector.data);
#if DEBUG_CLIPPING
uint32_t i = 0;
fprintf(stderr, "=========\n");
for(i = offset; i < activeList->vector.size; ++i) {
ClipVertex* v = aligned_vector_at(&activeList->vector, i);
if(v->flags == 0xe0000000 || v->flags == 0xf0000000) {
fprintf(stderr, "(%f, %f, %f) -> %x\n", v->xyz[0], v->xyz[1], v->xyz[2], v->flags);
} else {
fprintf(stderr, "%x\n", *((uint32_t*)v));
}
}
#endif
spaceNeeded = clip(&activeList->vector, offset, spaceNeeded);
/* Clipping may have realloc'd so reset the start pointer */
start = ((ClipVertex*) activeList->vector.data) + startOffset;
header = (PVRHeader*) (start - 1); /* Update the header pointer */
#if DEBUG_CLIPPING
fprintf(stderr, "--------\n");
for(i = offset; i < activeList->vector.size; ++i) {
ClipVertex* v = aligned_vector_at(&activeList->vector, i);
if(v->flags == 0xe0000000 || v->flags == 0xf0000000) {
fprintf(stderr, "(%f, %f, %f) -> %x\n", v->xyz[0], v->xyz[1], v->xyz[2], v->flags);
} else {
fprintf(stderr, "%x\n", *((uint32_t*)v));
}
}
#endif
}
profiler_checkpoint("clip");
divide(start, spaceNeeded);
profiler_checkpoint("divide");
push(header, start, spaceNeeded, _glActivePolyList(), 0);
profiler_checkpoint("push");
/*
Now, if multitexturing is enabled, we want to send exactly the same vertices again, except:
- We want to enable blending, and send them to the TR list
- We want to set the depth func to GL_EQUAL
- We want to set the second texture ID
- We want to set the uv coordinates to the passed st ones
*/
if(!doMultitexture) {
/* Multitexture actively disabled */
profiler_pop();
return;
}
TextureObject* texture1 = _glGetTexture1();
if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) {
/* Multitexture implicitly disabled */
profiler_pop();
return;
}
/* Push back a copy of the list to the transparent poly list, including the header
(hence the - 1)
*/
ClipVertex* vertex = aligned_vector_push_back(
&_glTransparentPolyList()->vector, start - 1, spaceNeeded + 1
);
PVRHeader* mtHeader = (PVRHeader*) vertex++;
ClipVertex* mtStart = vertex;
/* Copy ST coordinates to UV ones */
GLsizei i = spaceNeeded;
while(i--) {
vertex->uv[0] = vertex->st[0];
vertex->uv[1] = vertex->st[1];
++vertex;
}
/* Store state, as we're about to mess around with it */
GLint depthFunc, blendSrc, blendDst;
glGetIntegerv(GL_DEPTH_FUNC, &depthFunc);
glGetIntegerv(GL_BLEND_SRC, &blendSrc);
glGetIntegerv(GL_BLEND_DST, &blendDst);
GLboolean blendEnabled = glIsEnabled(GL_BLEND);
GLboolean depthEnabled = glIsEnabled(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
/* Send the buffer again to the transparent list */
push(mtHeader, mtStart, spaceNeeded, _glTransparentPolyList(), 1);
/* Reset state */
glDepthFunc(depthFunc);
glBlendFunc(blendSrc, blendDst);
(blendEnabled) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
(depthEnabled) ? glEnable(GL_DEPTH_TEST) : glDisable(GL_DEPTH_TEST);
}
void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) {
TRACE();
if(_glCheckImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, 0, count, type, indices);
}
void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) {
TRACE();
if(_glCheckImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, first, count, GL_UNSIGNED_SHORT, NULL);
}
void APIENTRY glEnableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, "glEnableClientState");
}
}
void APIENTRY glDisableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, "glDisableClientState");
}
}
GLuint _glGetActiveClientTexture() {
return ACTIVE_CLIENT_TEXTURE;
}
void APIENTRY glClientActiveTextureARB(GLenum texture) {
TRACE();
if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) {
_glKosThrowError(GL_INVALID_ENUM, "glClientActiveTextureARB");
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0;
}
void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &UV_POINTER : &ST_POINTER;
tointer->ptr = pointer;
tointer->stride = stride;
tointer->type = type;
tointer->size = size;
}
void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
VERTEX_POINTER.ptr = pointer;
VERTEX_POINTER.stride = stride;
VERTEX_POINTER.type = type;
VERTEX_POINTER.size = size;
}
void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
DIFFUSE_POINTER.ptr = pointer;
DIFFUSE_POINTER.stride = stride;
DIFFUSE_POINTER.type = type;
DIFFUSE_POINTER.size = size;
}
void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
NORMAL_POINTER.ptr = pointer;
NORMAL_POINTER.stride = stride;
NORMAL_POINTER.type = type;
NORMAL_POINTER.size = 3;
}