GLdc/GL/texture.c
2020-03-02 19:20:42 +00:00

1382 lines
41 KiB
C

#include "private.h"
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "config.h"
#include "../include/glext.h"
#include "../include/glkos.h"
#define CLAMP_U (1<<1)
#define CLAMP_V (1<<0)
#define MAX(x, y) ((x > y) ? x : y)
static TextureObject* TEXTURE_UNITS[MAX_TEXTURE_UNITS] = {NULL, NULL};
static NamedArray TEXTURE_OBJECTS;
static GLubyte ACTIVE_TEXTURE = 0;
static TexturePalette* SHARED_PALETTES[4] = {NULL, NULL, NULL, NULL};
static GLuint _determinePVRFormat(GLint internalFormat, GLenum type);
static GLboolean BANKS_USED[4]; // Each time a 256 colour bank is used, this is set to true
static GLboolean SUBBANKS_USED[4][16]; // 4 counts of the used 16 colour banks within the 256 ones
static GLenum INTERNAL_PALETTE_FORMAT = GL_RGBA4;
static TexturePalette* _initTexturePalette() {
TexturePalette* palette = (TexturePalette*) malloc(sizeof(TexturePalette));
assert(palette);
memset(palette, 0x0, sizeof(TexturePalette));
palette->bank = -1;
return palette;
}
static GLshort _glGenPaletteSlot(GLushort size) {
GLushort i, j;
assert(size == 16 || size == 256);
if(size == 16) {
for(i = 0; i < 4; ++i) {
for(j = 0; j < 16; ++j) {
if(!SUBBANKS_USED[i][j]) {
BANKS_USED[i] = GL_TRUE;
SUBBANKS_USED[i][j] = GL_TRUE;
return (i * 16) + j;
}
}
}
} else {
for(i = 0; i < 4; ++i) {
if(!BANKS_USED[i]) {
BANKS_USED[i] = GL_TRUE;
for(j = 0; j < 16; ++j) {
SUBBANKS_USED[i][j] = GL_TRUE;
}
return i;
}
}
}
fprintf(stderr, "GL ERROR: No palette slots remain\n");
return -1;
}
static void _glReleasePaletteSlot(GLshort slot, GLushort size) {
GLushort i;
assert(size == 16 || size == 256);
if(size == 16) {
GLushort bank = slot / 4;
GLushort subbank = slot % 4;
SUBBANKS_USED[bank][subbank] = GL_FALSE;
for(i = 0; i < 16; ++i) {
if(SUBBANKS_USED[bank][i]) {
return;
}
}
BANKS_USED[bank] = GL_FALSE;
} else {
BANKS_USED[slot] = GL_FALSE;
for(i = 0; i < 16; ++i) {
SUBBANKS_USED[slot][i] = GL_FALSE;
}
}
}
TexturePalette* _glGetSharedPalette(GLshort bank) {
assert(bank >= 0 && bank < 4);
return SHARED_PALETTES[bank];
}
void _glSetInternalPaletteFormat(GLenum val) {
INTERNAL_PALETTE_FORMAT = val;
if(INTERNAL_PALETTE_FORMAT == GL_RGBA4) {
pvr_set_pal_format(PVR_PAL_ARGB4444);
} else {
assert(INTERNAL_PALETTE_FORMAT == GL_RGBA8);
pvr_set_pal_format(PVR_PAL_ARGB8888);
}
}
void _glApplyColorTable(TexturePalette* src) {
/*
* FIXME:
*
* - Different palette formats (GL_RGB -> PVR_PAL_RGB565)
*/
if(!src || !src->data) {
return;
}
GLushort i;
GLushort offset = src->size * src->bank;
for(i = 0; i < src->width; ++i) {
GLubyte* entry = &src->data[i * 4];
if(INTERNAL_PALETTE_FORMAT == GL_RGBA8) {
pvr_set_pal_entry(offset + i, PACK_ARGB8888(entry[3], entry[0], entry[1], entry[2]));
} else {
pvr_set_pal_entry(offset + i, PACK_ARGB4444(entry[3], entry[0], entry[1], entry[2]));
}
}
}
GLubyte _glGetActiveTexture() {
return ACTIVE_TEXTURE;
}
static GLint _determineStride(GLenum format, GLenum type) {
switch(type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (format == GL_RED || format == GL_ALPHA) ? 1 : (format == GL_RGB) ? 3 : 4;
case GL_UNSIGNED_SHORT:
return (format == GL_RED || format == GL_ALPHA) ? 2 : (format == GL_RGB) ? 6 : 8;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_5_6_5_TWID_KOS:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
return 2;
}
return -1;
}
static GLuint _glGetMipmapDataOffset(TextureObject* obj, GLuint level) {
GLuint offset = 0;
GLuint size = obj->height;
if(obj->width != obj->height) {
fprintf(stderr, "ERROR: Accessing memory location of mipmaps on non-square texture\n");
return obj->baseDataOffset;
}
if(obj->isPaletted){
switch(size >> level){
case 1024:
offset = 0x55558;
break;
case 512:
offset = 0x15558;
break;
case 256:
offset = 0x05558;
break;
case 128:
offset = 0x01558;
break;
case 64:
offset = 0x00558;
break;
case 32:
offset = 0x00158;
break;
case 16:
offset = 0x00058;
break;
case 8:
offset = 0x00018;
break;
case 4:
offset = 0x00008;
break;
case 2:
offset = 0x00004;
break;
case 1:
offset = 0x00003;
break;
}
} else {
switch(size >> level) {
case 1024:
offset = 0xAAAB0;
break;
case 512:
offset = 0x2AAB0;
break;
case 256:
offset = 0x0AAB0;
break;
case 128:
offset = 0x02AB0;
break;
case 64:
offset = 0x00AB0;
break;
case 32:
offset = 0x002B0;
break;
case 16:
offset = 0x000B0;
break;
case 8:
offset = 0x00030;
break;
case 4:
offset = 0x00010;
break;
case 2:
offset = 0x00008;
break;
case 1:
offset = 0x00006;
break;
}
}
return offset;
}
GLubyte* _glGetMipmapLocation(TextureObject* obj, GLuint level) {
return ((GLubyte*) obj->data) + _glGetMipmapDataOffset(obj, level);
}
GLuint _glGetMipmapLevelCount(TextureObject* obj) {
return 1 + floor(log2(MAX(obj->width, obj->height)));
}
static GLuint _glGetMipmapDataSize(TextureObject* obj) {
/* The mipmap data size is the offset + the size of the
* image */
GLuint imageSize = obj->baseDataSize;
GLuint offset = _glGetMipmapDataOffset(obj, 0);
return imageSize + offset;
}
GLubyte _glInitTextures() {
named_array_init(&TEXTURE_OBJECTS, sizeof(TextureObject), MAX_TEXTURE_COUNT);
// Reserve zero so that it is never given to anyone as an ID!
named_array_reserve(&TEXTURE_OBJECTS, 0);
SHARED_PALETTES[0] = _initTexturePalette();
SHARED_PALETTES[1] = _initTexturePalette();
SHARED_PALETTES[2] = _initTexturePalette();
SHARED_PALETTES[3] = _initTexturePalette();
memset((void*) BANKS_USED, 0x0, sizeof(BANKS_USED));
memset((void*) SUBBANKS_USED, 0x0, sizeof(SUBBANKS_USED));
return 1;
}
TextureObject* _glGetTexture0() {
return TEXTURE_UNITS[0];
}
TextureObject* _glGetTexture1() {
return TEXTURE_UNITS[1];
}
TextureObject* _glGetBoundTexture() {
return TEXTURE_UNITS[ACTIVE_TEXTURE];
}
void APIENTRY glActiveTextureARB(GLenum texture) {
TRACE();
if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS)
_glKosThrowError(GL_INVALID_ENUM, "glActiveTextureARB");
if(_glKosHasError()) {
_glKosPrintError();
return;
}
ACTIVE_TEXTURE = texture & 0xF;
}
GLboolean APIENTRY glIsTexture(GLuint texture) {
return (named_array_used(&TEXTURE_OBJECTS, texture)) ? GL_TRUE : GL_FALSE;
}
static void _glInitializeTextureObject(TextureObject* txr, unsigned int id) {
txr->index = id;
txr->width = txr->height = 0;
txr->mipmap = 0;
txr->uv_clamp = 0;
txr->env = PVR_TXRENV_MODULATE;
txr->data = NULL;
txr->mipmapCount = 0;
txr->minFilter = GL_NEAREST;
txr->magFilter = GL_NEAREST;
txr->palette = NULL;
txr->isCompressed = GL_FALSE;
txr->isPaletted = GL_FALSE;
/* Not mipmapped by default */
txr->baseDataOffset = 0;
/* Always default to the first shared bank */
txr->shared_bank = 0;
}
void APIENTRY glGenTextures(GLsizei n, GLuint *textures) {
TRACE();
while(n--) {
GLuint id = 0;
TextureObject* txr = (TextureObject*) named_array_alloc(&TEXTURE_OBJECTS, &id);
assert(id); // Generated IDs must never be zero
_glInitializeTextureObject(txr, id);
*textures = id;
textures++;
}
}
void APIENTRY glDeleteTextures(GLsizei n, GLuint *textures) {
TRACE();
while(n--) {
TextureObject* txr = (TextureObject*) named_array_get(&TEXTURE_OBJECTS, *textures);
/* Make sure we update framebuffer objects that have this texture attached */
_glWipeTextureOnFramebuffers(*textures);
if(txr == TEXTURE_UNITS[ACTIVE_TEXTURE]) {
TEXTURE_UNITS[ACTIVE_TEXTURE] = NULL;
}
if(txr->data) {
pvr_mem_free(txr->data);
txr->data = NULL;
}
if(txr->palette && txr->palette->data) {
free(txr->palette->data);
txr->palette->data = NULL;
}
if(txr->palette) {
free(txr->palette);
txr->palette = NULL;
}
named_array_release(&TEXTURE_OBJECTS, *textures);
*textures = 0;
textures++;
}
}
void APIENTRY glBindTexture(GLenum target, GLuint texture) {
TRACE();
GLint target_values [] = {GL_TEXTURE_2D, 0};
if(_glCheckValidEnum(target, target_values, __func__) != 0) {
return;
}
if(texture) {
/* If this didn't come from glGenTextures, then we should initialize the
* texture the first time it's bound */
if(!named_array_used(&TEXTURE_OBJECTS, texture)) {
TextureObject* txr = named_array_reserve(&TEXTURE_OBJECTS, texture);
_glInitializeTextureObject(txr, texture);
}
TEXTURE_UNITS[ACTIVE_TEXTURE] = (TextureObject*) named_array_get(&TEXTURE_OBJECTS, texture);
} else {
TEXTURE_UNITS[ACTIVE_TEXTURE] = NULL;
}
}
void APIENTRY glTexEnvi(GLenum target, GLenum pname, GLint param) {
TRACE();
GLint target_values [] = {GL_TEXTURE_ENV, 0};
GLint pname_values [] = {GL_TEXTURE_ENV_MODE, 0};
GLint param_values [] = {GL_MODULATE, GL_DECAL, GL_REPLACE, 0};
GLubyte failures = 0;
failures += _glCheckValidEnum(target, target_values, __func__);
failures += _glCheckValidEnum(pname, pname_values, __func__);
failures += _glCheckValidEnum(param, param_values, __func__);
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
if(!active) {
return;
}
if(failures) {
return;
}
switch(param) {
case GL_MODULATE:
active->env = PVR_TXRENV_MODULATE;
break;
case GL_DECAL:
active->env = PVR_TXRENV_DECAL;
break;
case GL_REPLACE:
active->env = PVR_TXRENV_REPLACE;
break;
default:
break;
}
}
void APIENTRY glTexEnvf(GLenum target, GLenum pname, GLfloat param) {
glTexEnvi(target, pname, param);
}
void APIENTRY glCompressedTexImage2DARB(GLenum target,
GLint level,
GLenum internalFormat,
GLsizei width,
GLsizei height,
GLint border,
GLsizei imageSize,
const GLvoid *data) {
TRACE();
if(target != GL_TEXTURE_2D) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
GLint w = width;
if(w < 8 || (w & -w) != w) {
/* Width is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, __func__);
}
GLint h = height;
if(h < 8 || (h & -h) != h) {
/* Height is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, __func__);
}
if(level || border) {
/* We don't support setting mipmap levels manually with compressed textures
maybe one day */
_glKosThrowError(GL_INVALID_VALUE, __func__);
}
GLboolean mipmapped = GL_FALSE;
switch(internalFormat) {
case GL_COMPRESSED_ARGB_1555_VQ_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_KOS:
case GL_COMPRESSED_RGB_565_VQ_TWID_KOS:
break;
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_TWID_KOS:
mipmapped = GL_TRUE;
break;
default:
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(TEXTURE_UNITS[ACTIVE_TEXTURE] == NULL) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
/* Guess whether we have mipmaps or not */
/* `expected` is the uncompressed size */
GLuint expected = sizeof(GLshort) * width * height;
/* The ratio is the uncompressed vs compressed data size */
GLuint ratio = (GLuint) (((GLfloat) expected) / ((GLfloat) imageSize));
if(ratio < 7 && !mipmapped) {
/* If the ratio is less than 1:7 then we assume that the reason for that
is the extra data used for mipmaps. Testing shows that a single VQ compressed
image is around 1:7 or 1:8. We may need to tweak this if it detects false positives */
fprintf(stderr, "GL ERROR: Detected multiple mipmap levels being uploaded to %s\n", __func__);
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
/* Set the required mipmap count */
active->width = width;
active->height = height;
active->color = _determinePVRFormat(
internalFormat,
internalFormat /* Doesn't matter (see determinePVRFormat) */
);
active->mipmapCount = _glGetMipmapLevelCount(active);
active->mipmap = (mipmapped) ? ~0 : (1 << level); /* Set only a single bit if this wasn't mipmapped otherwise set all */
active->isCompressed = GL_TRUE;
/* Odds are slim new data is same size as old, so free always */
if(active->data)
pvr_mem_free(active->data);
active->data = pvr_mem_malloc(imageSize);
if(data)
sq_cpy(active->data, data, imageSize);
}
static GLint _cleanInternalFormat(GLint internalFormat) {
switch (internalFormat) {
case GL_COLOR_INDEX8_EXT:
return GL_COLOR_INDEX8_EXT;
case GL_ALPHA:
/* case GL_ALPHA4:
case GL_ALPHA8:
case GL_ALPHA12:
case GL_ALPHA16:*/
return GL_ALPHA;
case 1:
case GL_LUMINANCE:
/* case GL_LUMINANCE4:
case GL_LUMINANCE8:
case GL_LUMINANCE12:
case GL_LUMINANCE16:*/
return GL_LUMINANCE;
case 2:
case GL_LUMINANCE_ALPHA:
/* case GL_LUMINANCE4_ALPHA4:
case GL_LUMINANCE6_ALPHA2:
case GL_LUMINANCE8_ALPHA8:
case GL_LUMINANCE12_ALPHA4:
case GL_LUMINANCE12_ALPHA12:
case GL_LUMINANCE16_ALPHA16: */
return GL_LUMINANCE_ALPHA;
/* case GL_INTENSITY:
case GL_INTENSITY4:
case GL_INTENSITY8:
case GL_INTENSITY12:
case GL_INTENSITY16:
return GL_INTENSITY; */
case 3:
return GL_RGB;
case GL_RGB:
/* case GL_R3_G3_B2: */
case GL_RGB4:
case GL_RGB5:
case GL_RGB8:
case GL_RGB10:
case GL_RGB12:
case GL_RGB16:
return GL_RGB;
case 4:
return GL_RGBA;
case GL_RGBA:
case GL_RGBA2:
case GL_RGBA4:
case GL_RGB5_A1:
case GL_RGBA8:
case GL_RGB10_A2:
case GL_RGBA12:
case GL_RGBA16:
return GL_RGBA;
/* Support ARB_texture_rg */
case GL_RED:
/* case GL_R8:
case GL_R16:
case GL_RED:
case GL_COMPRESSED_RED: */
return GL_RED;
/* case GL_RG:
case GL_RG8:
case GL_RG16:
case GL_COMPRESSED_RG:
return GL_RG;*/
default:
return -1;
}
}
static GLuint _determinePVRFormat(GLint internalFormat, GLenum type) {
/* Given a cleaned internalFormat, return the Dreamcast format
* that can hold it
*/
switch(internalFormat) {
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
/* OK so if we have something that requires alpha, we return 4444 unless
* the type was already 1555 (1-bit alpha) in which case we return that
*/
if(type == GL_UNSIGNED_SHORT_1_5_5_5_REV) {
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_NONTWIDDLED;
} else if(type == GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS) {
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_TWIDDLED;
} else if(type == GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS) {
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_TWIDDLED;
} else {
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_NONTWIDDLED;
}
case GL_RED:
case GL_RGB:
/* No alpha? Return RGB565 which is the best we can do without using palettes */
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_NONTWIDDLED;
/* Compressed and twiddled versions */
case GL_UNSIGNED_SHORT_5_6_5_TWID_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_TWIDDLED;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_TWIDDLED;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_TWIDDLED;
case GL_COMPRESSED_RGB_565_VQ_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_RGB_565_VQ_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_4444_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_4444_VQ_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_1555_VQ_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_1555_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COLOR_INDEX8_EXT:
return PVR_TXRFMT_PAL8BPP | PVR_TXRFMT_TWIDDLED;
default:
return 0;
}
}
typedef void (*TextureConversionFunc)(const GLubyte*, GLubyte*);
static inline void _rgba8888_to_argb4444(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = (source[3] & 0xF0) << 8 | (source[0] & 0xF0) << 4 | (source[1] & 0xF0) | (source[2] & 0xF0) >> 4;
}
static inline void _rgba8888_to_rgba8888(const GLubyte* source, GLubyte* dest) {
/* Noop */
GLubyte* dst = (GLubyte*) dest;
dst[0] = source[0];
dst[1] = source[1];
dst[2] = source[2];
dst[3] = source[3];
}
static inline void _rgba8888_to_rgb565(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = ((source[0] & 0b11111000) << 8) | ((source[1] & 0b11111100) << 3) | (source[2] >> 3);
}
static inline void _rgb888_to_rgba8888(const GLubyte* source, GLubyte* dest) {
/* Noop */
GLubyte* dst = (GLubyte*) dest;
dst[0] = source[0];
dst[1] = source[1];
dst[2] = source[2];
dst[3] = 255;
}
static inline void _rgb888_to_rgb565(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = ((source[0] & 0b11111000) << 8) | ((source[1] & 0b11111100) << 3) | (source[2] >> 3);
}
static inline void _rgba8888_to_a000(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = ((source[3] & 0b11111000) << 8);
}
static inline void _r8_to_rgb565(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = (source[0] & 0b11111000) << 8;
}
static inline void _rgba4444_to_argb4444(const GLubyte* source, GLubyte* dest) {
GLushort* src = (GLushort*) source;
*((GLushort*) dest) = ((*src & 0x000F) << 12) | *src >> 4;
}
static inline void _rgba4444_to_rgba8888(const GLubyte* source, GLubyte* dest) {
GLushort src = *((GLushort*) source);
GLubyte* dst = (GLubyte*) dest;
dst[0] = ((src & 0xF000) >> 12) * 2;
dst[1] = ((src & 0x0F00) >> 8) * 2;
dst[2] = ((src & 0x00F0) >> 4) * 2;
dst[3] = ((src & 0x000F)) * 2;
}
static inline void _i8_to_i8(const GLubyte* source, GLubyte* dest) {
/* For indexes */
GLubyte* dst = (GLubyte*) dest;
*dst = *source;
}
static inline void _alpha8_to_argb4444(const GLubyte* source, GLubyte* dest) {
*((GLushort*) dest) = (*source & 0xF0) << 8 | (0xFF & 0xF0) << 4 | (0xFF & 0xF0) | (0xFF & 0xF0) >> 4;
}
static TextureConversionFunc _determineConversion(GLint internalFormat, GLenum format, GLenum type) {
switch(internalFormat) {
case GL_ALPHA: {
if(format == GL_ALPHA) {
/* Dreamcast doesn't really support GL_ALPHA internally, so store as argb with each rgb value as white */
return _alpha8_to_argb4444;
} else if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_a000;
} else if(type == GL_BYTE && format == GL_RGBA) {
return _rgba8888_to_a000;
}
} break;
case GL_RED: {
if(type == GL_UNSIGNED_BYTE && format == GL_RED) {
/* Dreamcast doesn't really support GL_RED internally, so store as rgb */
return _r8_to_rgb565;
}
} break;
case GL_RGB: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGB) {
return _rgb888_to_rgb565;
} else if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_rgb565;
} else if(type == GL_BYTE && format == GL_RGB) {
return _rgb888_to_rgb565;
} else if(type == GL_UNSIGNED_BYTE && format == GL_RED) {
return _r8_to_rgb565;
}
} break;
case GL_RGBA: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_argb4444;
} else if (type == GL_BYTE && format == GL_RGBA) {
return _rgba8888_to_argb4444;
} else if(type == GL_UNSIGNED_SHORT_4_4_4_4 && format == GL_RGBA) {
return _rgba4444_to_argb4444;
}
} break;
case GL_RGBA8: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_rgba8888;
} else if (type == GL_BYTE && format == GL_RGBA) {
return _rgba8888_to_rgba8888;
} else if(type == GL_UNSIGNED_BYTE && format == GL_RGB) {
return _rgb888_to_rgba8888;
} else if (type == GL_BYTE && format == GL_RGB) {
return _rgb888_to_rgba8888;
} else if(type == GL_UNSIGNED_SHORT_4_4_4_4 && format == GL_RGBA) {
return _rgba4444_to_rgba8888;
}
} break;
case GL_COLOR_INDEX8_EXT:
if(format == GL_COLOR_INDEX) {
switch(type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _i8_to_i8;
default:
break;
}
}
break;
default:
fprintf(stderr, "Unsupported conversion: %x -> %x, %x\n", internalFormat, format, type);
break;
}
return 0;
}
static GLboolean _isSupportedFormat(GLenum format) {
switch(format) {
case GL_ALPHA:
case GL_RED:
case GL_RGB:
case GL_RGBA:
case GL_BGRA:
case GL_COLOR_INDEX:
return GL_TRUE;
default:
return GL_FALSE;
}
}
GLboolean _glIsMipmapComplete(const TextureObject* obj) {
// Non-square textures can't have mipmaps
if(obj->width != obj->height) {
return GL_FALSE;
}
if(!obj->mipmap || !obj->mipmapCount) {
return GL_FALSE;
}
GLsizei i = 0;
for(; i < obj->mipmapCount; ++i) {
if((obj->mipmap & (1 << i)) == 0) {
return GL_FALSE;
}
}
return GL_TRUE;
}
void _glAllocateSpaceForMipmaps(TextureObject* active) {
if(active->data && active->baseDataOffset > 0) {
/* Already done - mipmaps have a dataOffset */
return;
}
/* We've allocated level 0 before, but now we're allocating
* a level beyond that, we need to reallocate the data, copy level 0
* then free the original
*/
GLuint size = active->baseDataSize;
/* Copy the data out of the pvr and back to ram */
GLubyte* temp = (GLubyte*) malloc(size);
memcpy(temp, active->data, size);
/* Free the PVR data */
pvr_mem_free(active->data);
active->data = NULL;
/* Figure out how much room to allocate for mipmaps */
GLuint bytes = _glGetMipmapDataSize(active);
active->data = pvr_mem_malloc(bytes);
/* If there was existing data, then copy it where it should go */
memcpy(_glGetMipmapLocation(active, 0), temp, size);
/* We no longer need this */
free(temp);
/* Set the data offset depending on whether or not this is a
* paletted texure */
active->baseDataOffset = _glGetMipmapDataOffset(active, 0);
}
void APIENTRY glTexImage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *data) {
TRACE();
if(target != GL_TEXTURE_2D) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
if(format != GL_COLOR_INDEX) {
if(!_isSupportedFormat(format)) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
/* Abuse determineStride to see if type is valid */
if(_determineStride(GL_RGBA, type) == -1) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
internalFormat = _cleanInternalFormat(internalFormat);
if(internalFormat == -1) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
} else {
if(internalFormat != GL_COLOR_INDEX8_EXT) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
GLint w = width;
if(w < 8 || (w & -w) != w) {
/* Width is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
GLint h = height;
if(h < 8 || (h & -h) != h) {
/* height is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(level < 0) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(level > 0 && width != height) {
fprintf(stderr, "[GL ERROR] Mipmaps cannot be supported on non-square textures\n");
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(border) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(!TEXTURE_UNITS[ACTIVE_TEXTURE]) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
GLboolean isPaletted = (internalFormat == GL_COLOR_INDEX8_EXT) ? GL_TRUE : GL_FALSE;
if(isPaletted && level > 0) {
/* Paletted textures can't have mipmaps */
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
/* Calculate the format that we need to convert the data to */
GLuint pvr_format = _determinePVRFormat(internalFormat, type);
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
assert(active);
if(active->data && level == 0) {
/* pre-existing texture - check if changed */
if(active->width != width ||
active->height != height ||
active->color != pvr_format) {
/* changed - free old texture memory */
pvr_mem_free(active->data);
active->data = NULL;
active->mipmap = 0;
active->mipmapCount = 0;
active->dataStride = 0;
active->baseDataOffset = 0;
active->baseDataSize = 0;
}
}
/* All colour formats are represented as shorts internally. Paletted textures
* are represented by byte indexes (which look up into a color table)
*/
GLint destStride = isPaletted ? 1 : 2;
GLuint bytes = (width * height * destStride);
if(!active->data) {
assert(active);
assert(width);
assert(height);
assert(destStride);
/* need texture memory */
active->width = width;
active->height = height;
active->color = pvr_format;
/* Set the required mipmap count */
active->mipmapCount = _glGetMipmapLevelCount(active);
active->dataStride = destStride;
active->baseDataSize = bytes;
assert(bytes);
if(level > 0) {
/* If we're uploading a mipmap level, we need to allocate the full amount of space */
_glAllocateSpaceForMipmaps(active);
} else {
active->data = pvr_mem_malloc(active->baseDataSize);
}
assert(active->data);
active->isCompressed = GL_FALSE;
active->isPaletted = isPaletted;
}
/* We're supplying a mipmap level, but previously we only had
* data for the first level (level 0) */
if(level > 0 && active->baseDataOffset == 0) {
_glAllocateSpaceForMipmaps(active);
}
/* Mark this level as set in the mipmap bitmask */
active->mipmap |= (1 << level);
/* Let's assume we need to convert */
GLboolean needsConversion = GL_TRUE;
/* Let's assume we need twiddling - we always store things twiddled! */
GLboolean needsTwiddling = GL_TRUE;
/*
* These are the only formats where the source format passed in matches the pvr format.
* Note the REV formats + GL_BGRA will reverse to ARGB which is what the PVR supports
*/
if(format == GL_COLOR_INDEX) {
/* Don't convert color indexes */
needsConversion = GL_FALSE;
if(type == GL_UNSIGNED_BYTE_TWID_KOS) {
needsTwiddling = GL_FALSE;
}
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_4_4_4_4_REV && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_1_5_5_5_REV && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
} else if(format == GL_RGB && type == GL_UNSIGNED_SHORT_5_6_5 && internalFormat == GL_RGB) {
needsConversion = GL_FALSE;
} else if(format == GL_RGB && type == GL_UNSIGNED_SHORT_5_6_5_TWID_KOS && internalFormat == GL_RGB) {
needsConversion = GL_FALSE;
needsTwiddling = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
needsTwiddling = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
needsTwiddling = GL_FALSE;
}
GLubyte* targetData = (active->baseDataOffset == 0) ? active->data : _glGetMipmapLocation(active, level);
assert(targetData);
GLubyte* conversionBuffer = NULL;
if(!data) {
/* No data? Do nothing! */
return;
} else if(!needsConversion && !needsTwiddling) {
assert(targetData);
assert(data);
assert(bytes);
/* No conversion? Just copy the data, and the pvr_format is correct */
FASTCPY(targetData, data, bytes);
return;
} else if(needsConversion) {
TextureConversionFunc convert = _determineConversion(
internalFormat,
format,
type
);
if(!convert) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
return;
}
GLint stride = _determineStride(format, type);
assert(stride > -1);
if(stride == -1) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
return;
}
conversionBuffer = malloc(bytes);
GLubyte* dest = conversionBuffer;
const GLubyte* source = data;
assert(conversionBuffer);
assert(source);
/* Perform the conversion */
GLuint i;
for(i = 0; i < bytes; i += destStride) {
convert(source, dest);
dest += destStride;
source += stride;
}
}
if(needsTwiddling) {
const GLubyte *pixels = (GLubyte*) (conversionBuffer) ? conversionBuffer : data;
if(internalFormat == GL_COLOR_INDEX8_EXT) {
pvr_txr_load_ex((void*) pixels, targetData, width, height, PVR_TXRLOAD_8BPP);
} else {
pvr_txr_load_ex((void*) pixels, targetData, width, height, PVR_TXRLOAD_16BPP);
}
/* We make sure we remove nontwiddled and add twiddled. We could always
* make it twiddled when determining the format but I worry that would make the
* code less flexible to change in the future */
active->color &= ~(1 << 26);
} else {
/* We should only get here if we converted twiddled data... which is never currently */
assert(conversionBuffer);
// We've already converted the data and we
// don't need to twiddle it!
FASTCPY(targetData, conversionBuffer, bytes);
}
if(conversionBuffer) {
free(conversionBuffer);
conversionBuffer = NULL;
}
}
void APIENTRY glTexParameteri(GLenum target, GLenum pname, GLint param) {
TRACE();
TextureObject* active = _glGetBoundTexture();
if(!active) {
return;
}
if(target == GL_TEXTURE_2D) {
switch(pname) {
case GL_TEXTURE_MAG_FILTER:
switch(param) {
case GL_NEAREST:
case GL_LINEAR:
break;
default: {
_glKosThrowError(GL_INVALID_VALUE, __func__);
_glKosPrintError();
return;
}
}
active->magFilter = param;
break;
case GL_TEXTURE_MIN_FILTER:
switch(param) {
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_NEAREST:
break;
default: {
_glKosThrowError(GL_INVALID_VALUE, __func__);
_glKosPrintError();
return;
}
}
active->minFilter = param;
break;
case GL_TEXTURE_WRAP_S:
switch(param) {
case GL_CLAMP:
active->uv_clamp |= CLAMP_U;
break;
case GL_REPEAT:
active->uv_clamp &= ~CLAMP_U;
break;
}
break;
case GL_TEXTURE_WRAP_T:
switch(param) {
case GL_CLAMP:
active->uv_clamp |= CLAMP_V;
break;
case GL_REPEAT:
active->uv_clamp &= ~CLAMP_V;
break;
}
break;
case GL_SHARED_TEXTURE_BANK_KOS:
active->shared_bank = param;
break;
default:
break;
}
}
}
void APIENTRY glTexParameterf(GLenum target, GLenum pname, GLint param) {
glTexParameteri(target, pname, (GLint) param);
}
GLAPI void APIENTRY glColorTableEXT(GLenum target, GLenum internalFormat, GLsizei width, GLenum format, GLenum type, const GLvoid *data) {
GLint validTargets[] = {
GL_TEXTURE_2D,
GL_SHARED_TEXTURE_PALETTE_EXT,
GL_SHARED_TEXTURE_PALETTE_0_KOS,
GL_SHARED_TEXTURE_PALETTE_1_KOS,
GL_SHARED_TEXTURE_PALETTE_2_KOS,
GL_SHARED_TEXTURE_PALETTE_3_KOS,
0
};
GLint validInternalFormats[] = {GL_RGB8, GL_RGBA8, 0};
GLint validFormats[] = {GL_RGB, GL_RGBA, 0};
GLint validTypes[] = {GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, 0};
if(_glCheckValidEnum(target, validTargets, __func__) != 0) {
return;
}
if(_glCheckValidEnum(internalFormat, validInternalFormats, __func__) != 0) {
return;
}
if(_glCheckValidEnum(format, validFormats, __func__) != 0) {
return;
}
if(_glCheckValidEnum(type, validTypes, __func__) != 0) {
return;
}
/* Only allow up to 256 colours in a palette */
if(width > 256 || width == 0) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
_glKosPrintError();
return;
}
GLint sourceStride = _determineStride(format, type);
assert(sourceStride > -1);
TextureConversionFunc convert = _determineConversion(
GL_RGBA8, /* We always store palettes in this format */
format,
type
);
if(!convert) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
return;
}
TexturePalette* palette = NULL;
/* Custom extension - allow uploading to one of 4 custom palettes */
if(target == GL_SHARED_TEXTURE_PALETTE_EXT || target == GL_SHARED_TEXTURE_PALETTE_0_KOS) {
palette = SHARED_PALETTES[0];
} else if(target == GL_SHARED_TEXTURE_PALETTE_1_KOS) {
palette = SHARED_PALETTES[1];
} else if(target == GL_SHARED_TEXTURE_PALETTE_2_KOS) {
palette = SHARED_PALETTES[2];
} else if(target == GL_SHARED_TEXTURE_PALETTE_3_KOS) {
palette = SHARED_PALETTES[3];
} else {
TextureObject* active = _glGetBoundTexture();
if(!active->palette) {
active->palette = _initTexturePalette();
}
palette = active->palette;
}
assert(palette);
if(target) {
free(palette->data);
palette->data = NULL;
}
if(palette->bank > -1) {
_glReleasePaletteSlot(palette->bank, palette->size);
palette->bank = -1;
}
palette->data = (GLubyte*) malloc(width * 4);
palette->format = format;
palette->width = width;
palette->size = (width > 16) ? 256 : 16;
assert(palette->size == 16 || palette->size == 256);
palette->bank = _glGenPaletteSlot(palette->size);
if(palette->bank < 0) {
/* We ran out of slots! */
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
free(palette->data);
palette->format = palette->width = palette->size = 0;
return;
}
GLubyte* src = (GLubyte*) data;
GLubyte* dst = (GLubyte*) palette->data;
assert(src);
assert(dst);
/* Transform and copy the source palette to the texture */
GLushort i = 0;
for(; i < width; ++i) {
convert(src, dst);
src += sourceStride;
dst += 4;
}
_glApplyColorTable(palette);
}
GLAPI void APIENTRY glColorSubTableEXT(GLenum target, GLsizei start, GLsizei count, GLenum format, GLenum type, const GLvoid *data) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
}
GLAPI void APIENTRY glGetColorTableEXT(GLenum target, GLenum format, GLenum type, GLvoid *data) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
}
GLAPI void APIENTRY glGetColorTableParameterivEXT(GLenum target, GLenum pname, GLint *params) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
}
GLAPI void APIENTRY glGetColorTableParameterfvEXT(GLenum target, GLenum pname, GLfloat *params) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
_glKosPrintError();
}
GLAPI void APIENTRY glTexSubImage2D(
GLenum target, GLint level, GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *pixels) {
}
GLAPI void APIENTRY glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height) {
}
GLAPI void APIENTRY glCopyTexSubImage1D(GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width) {
}
GLAPI void APIENTRY glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border) {
}
GLAPI void APIENTRY glCopyTexImage1D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border) {
}
GLAPI void APIENTRY glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid *pixels) {
}