Add Hifigan compatibility to this repo #455

Open
Jarod wants to merge 2 commits from Jarod/ai-voice-cloning:master into master
2 changed files with 46 additions and 12 deletions

View File

@ -38,6 +38,7 @@ from datetime import datetime
from datetime import timedelta
from tortoise.api import TextToSpeech as TorToise_TTS, MODELS, get_model_path, pad_or_truncate
from tortoise.api_fast import TextToSpeech as Toroise_TTS_Hifi
from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir, get_voices
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, get_device_batch_size, do_gc
@ -1073,10 +1074,11 @@ def generate_tortoise(**kwargs):
settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice)
tts.load_autoregressive_model(settings['autoregressive_model'])
if settings['diffusion_model'] is not None:
if settings['diffusion_model'] == "auto":
settings['diffusion_model'] = deduce_diffusion_model(selected_voice)
tts.load_diffusion_model(settings['diffusion_model'])
if not args.use_hifigan:
if settings['diffusion_model'] is not None:
if settings['diffusion_model'] == "auto":
settings['diffusion_model'] = deduce_diffusion_model(selected_voice)
tts.load_diffusion_model(settings['diffusion_model'])
if settings['tokenizer_json'] is not None:
tts.load_tokenizer_json(settings['tokenizer_json'])
@ -1180,9 +1182,14 @@ def generate_tortoise(**kwargs):
latents_path = f'{dir}/cond_latents_{model_hash}.pth'
if voice == "random" or voice == "microphone":
if latents and settings is not None and settings['conditioning_latents']:
os.makedirs(dir, exist_ok=True)
torch.save(conditioning_latents, latents_path)
if args.use_hifigan:
if latents and settings is not None and torch.any(settings['conditioning_latents']):
os.makedirs(dir, exist_ok=True)
torch.save(conditioning_latents, latents_path)
else:
if latents and settings is not None and settings['conditioning_latents']:
os.makedirs(dir, exist_ok=True)
torch.save(conditioning_latents, latents_path)
if latents_path and os.path.exists(latents_path):
try:
@ -1220,9 +1227,16 @@ def generate_tortoise(**kwargs):
raise Exception("Prompt settings editing requested, but received invalid JSON")
settings = get_settings( override=override )
gen, additionals = tts.tts(cut_text, **settings )
parameters['seed'] = additionals[0]
print(settings)
Review

Print statement on this line appears to be redundant and might not be necessary. overall, everything looks great.

Print statement on this line appears to be redundant and might not be necessary. overall, everything looks great.
try:
if args.use_hifigan:
gen = tts.tts(cut_text, **settings)
else:
gen, additionals = tts.tts(cut_text, **settings )
parameters['seed'] = additionals[0]
except Exception as e:
raise RuntimeError(f'Possible latent mismatch: click the "(Re)Compute Voice Latents" button and then try again. Error: {e}')
run_time = time.time()-start_time
print(f"Generating line took {run_time} seconds")
@ -3293,6 +3307,7 @@ def setup_args(cli=False):
'latents-lean-and-mean': True,
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
'use-deepspeed': False,
'use-hifigan': False,
'voice-fixer-use-cuda': True,
@ -3352,6 +3367,8 @@ def setup_args(cli=False):
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
parser.add_argument("--use-deepspeed", action='store_true', default=default_arguments['use-deepspeed'], help="Use deepspeed for speed bump.")
parser.add_argument("--use-hifigan", action='store_true', default=default_arguments['use-hifigan'], help="Use Hifigan instead of Diffusion")
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
@ -3437,6 +3454,7 @@ def get_default_settings( hypenated=True ):
'latents-lean-and-mean': args.latents_lean_and_mean,
'voice-fixer': args.voice_fixer,
'use-deepspeed': args.use_deepspeed,
'use-hifigan': args.use_hifigan,
'voice-fixer-use-cuda': args.voice_fixer_use_cuda,
'concurrency-count': args.concurrency_count,
'output-sample-rate': args.output_sample_rate,
@ -3491,6 +3509,7 @@ def update_args( **kwargs ):
args.voice_fixer = settings['voice_fixer']
args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda']
args.use_deepspeed = settings['use_deepspeed']
args.use_hifigan = settings['use_hifigan']
args.concurrency_count = settings['concurrency_count']
args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size']
@ -3662,8 +3681,22 @@ def load_tts( restart=False,
if get_device_name() == "cpu":
print("!!!! WARNING !!!! No GPU available in PyTorch. You may need to reinstall PyTorch.")
print(f"Loading TorToiSe... (AR: {autoregressive_model}, diffusion: {diffusion_model}, vocoder: {vocoder_model})")
tts = TorToise_TTS(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, diffusion_model_path=diffusion_model, vocoder_model=vocoder_model, tokenizer_json=tokenizer_json, unsqueeze_sample_batches=args.unsqueeze_sample_batches, use_deepspeed=args.use_deepspeed)
if args.use_hifigan:
print("Loading Tortoise with Hifigan")
tts = Toroise_TTS_Hifi(autoregressive_model_path=autoregressive_model,
tokenizer_json=tokenizer_json,
use_deepspeed=args.use_deepspeed)
else:
print(f"Loading TorToiSe... (AR: {autoregressive_model}, diffusion: {diffusion_model}, vocoder: {vocoder_model})")
tts = TorToise_TTS(minor_optimizations=not args.low_vram,
autoregressive_model_path=autoregressive_model,
diffusion_model_path=diffusion_model,
vocoder_model=vocoder_model,
tokenizer_json=tokenizer_json,
unsqueeze_sample_batches=args.unsqueeze_sample_batches,
use_deepspeed=args.use_deepspeed)
elif args.tts_backend == "vall-e":
if valle_model:
args.valle_model = valle_model

View File

@ -644,6 +644,7 @@ def setup_gradio():
EXEC_SETTINGS['latents_lean_and_mean'] = gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean)
EXEC_SETTINGS['voice_fixer'] = gr.Checkbox(label="Use Voice Fixer on Generated Output", value=args.voice_fixer)
EXEC_SETTINGS['use_deepspeed'] = gr.Checkbox(label="Use DeepSpeed for Speed Bump.", value=args.use_deepspeed)
EXEC_SETTINGS['use_hifigan'] = gr.Checkbox(label="Use Hifigan instead of Diffusion.", value=args.use_hifigan)
EXEC_SETTINGS['voice_fixer_use_cuda'] = gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda)
EXEC_SETTINGS['force_cpu_for_conditioning_latents'] = gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents)
EXEC_SETTINGS['defer_tts_load'] = gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load)