reactphysics3d/src/collision/shapes/CollisionShape.h

292 lines
11 KiB
C
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_COLLISION_SHAPE_H
#define REACTPHYSICS3D_COLLISION_SHAPE_H
// Libraries
#include <cassert>
#include <typeinfo>
#include "../../mathematics/Vector3.h"
#include "../../mathematics/Matrix3x3.h"
2014-07-21 21:08:18 +00:00
#include "../../mathematics/Ray.h"
#include "AABB.h"
2014-07-21 21:08:18 +00:00
#include "../RaycastInfo.h"
#include "../../memory/MemoryAllocator.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
/// Type of the collision shape
enum CollisionShapeType {BOX, SPHERE, CONE, CYLINDER, CAPSULE, CONVEX_MESH};
// Declarations
class CollisionBody;
class ProxyShape;
// Class CollisionShape
/**
* This abstract class represents the collision shape associated with a
* body that is used during the narrow-phase collision detection.
*/
class CollisionShape {
protected :
// -------------------- Attributes -------------------- //
/// Type of the collision shape
CollisionShapeType mType;
/// Current number of similar created shapes
uint mNbSimilarCreatedShapes;
/// Margin used for the GJK collision detection algorithm
decimal mMargin;
// -------------------- Methods -------------------- //
/// Private copy-constructor
CollisionShape(const CollisionShape& shape);
/// Private assignment operator
CollisionShape& operator=(const CollisionShape& shape);
public :
// -------------------- Methods -------------------- //
/// Constructor
CollisionShape(CollisionShapeType type, decimal margin);
/// Destructor
virtual ~CollisionShape();
/// Allocate and return a copy of the object
virtual CollisionShape* clone(void* allocatedMemory) const=0;
/// Return the type of the collision shapes
CollisionShapeType getType() const;
/// Return the number of similar created shapes
uint getNbSimilarCreatedShapes() const;
/// Return the current object margin
decimal getMargin() const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const = 0;
/// Return the local bounds of the shape in x, y and z directions
virtual void getLocalBounds(Vector3& min, Vector3& max) const=0;
/// Return the local inertia tensor of the collision shapes
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const=0;
/// Compute the world-space AABB of the collision shape given a transform
virtual void computeAABB(AABB& aabb, const Transform& transform) const;
/// Increment the number of similar allocated collision shapes
void incrementNbSimilarCreatedShapes();
/// Decrement the number of similar allocated collision shapes
void decrementNbSimilarCreatedShapes();
/// Equality operator between two collision shapes.
bool operator==(const CollisionShape& otherCollisionShape) const;
/// Test equality between two collision shapes of the same type (same derived classes).
virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const=0;
/// Create a proxy collision shape for the collision shape
virtual ProxyShape* createProxyShape(MemoryAllocator& allocator, CollisionBody* body,
const Transform& transform, decimal mass)=0;
2014-08-01 10:36:32 +00:00
/// Raycast method
virtual bool raycast(const Ray& ray, decimal distance = RAYCAST_INFINITY_DISTANCE) const=0;
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo,
decimal distance = RAYCAST_INFINITY_DISTANCE) const=0;
};
// Class ProxyShape
/**
* The CollisionShape instances are supposed to be unique for memory optimization. For instance,
* consider two rigid bodies with the same sphere collision shape. In this situation, we will have
* a unique instance of SphereShape but we need to differentiate between the two instances during
* the collision detection. They do not have the same position in the world and they do not
* belong to the same rigid body. The ProxyShape class is used for that purpose by attaching a
* rigid body with one of its collision shape. A body can have multiple proxy shapes (one for
* each collision shape attached to the body).
*/
class ProxyShape {
2014-08-01 10:36:32 +00:00
protected:
// -------------------- Attributes -------------------- //
/// Pointer to the parent body
CollisionBody* mBody;
/// Local-space to parent body-space transform (does not change over time)
const Transform mLocalToBodyTransform;
/// Mass (in kilogramms) of the corresponding collision shape
decimal mMass;
/// Pointer to the next proxy shape of the body (linked list)
ProxyShape* mNext;
/// Broad-phase ID (node ID in the dynamic AABB tree)
int mBroadPhaseID;
// -------------------- Methods -------------------- //
/// Private copy-constructor
ProxyShape(const ProxyShape& proxyShape);
/// Private assignment operator
ProxyShape& operator=(const ProxyShape& proxyShape);
/// Return the non-const collision shape
virtual CollisionShape* getInternalCollisionShape() const=0;
public:
// -------------------- Methods -------------------- //
/// Constructor
ProxyShape(CollisionBody* body, const Transform& transform, decimal mass);
/// Destructor
~ProxyShape();
/// Return the collision shape
virtual const CollisionShape* getCollisionShape() const=0;
/// Return the number of bytes used by the proxy collision shape
virtual size_t getSizeInBytes() const=0;
/// Return the parent body
CollisionBody* getBody() const;
/// Return the mass of the collision shape
decimal getMass() const;
/// Return the local to parent body transform
const Transform& getLocalToBodyTransform() const;
/// Return a local support point in a given direction with the object margin
virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction)=0;
/// Return a local support point in a given direction without the object margin
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction)=0;
/// Return the current object margin
virtual decimal getMargin() const=0;
2014-08-01 10:36:32 +00:00
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const Vector3& worldPoint)=0;
2014-07-21 21:08:18 +00:00
/// Raycast method
2014-08-01 10:36:32 +00:00
virtual bool raycast(const Ray& ray, decimal distance = RAYCAST_INFINITY_DISTANCE) const=0;
2014-07-21 21:08:18 +00:00
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo,
2014-08-01 10:36:32 +00:00
decimal distance = RAYCAST_INFINITY_DISTANCE) const=0;
2014-07-21 21:08:18 +00:00
// -------------------- Friendship -------------------- //
friend class OverlappingPair;
friend class CollisionBody;
friend class RigidBody;
friend class BroadPhaseAlgorithm;
friend class DynamicAABBTree;
friend class CollisionDetection;
};
// Return the type of the collision shape
inline CollisionShapeType CollisionShape::getType() const {
return mType;
}
// Return the number of similar created shapes
inline uint CollisionShape::getNbSimilarCreatedShapes() const {
return mNbSimilarCreatedShapes;
}
// Return the current object margin
inline decimal CollisionShape::getMargin() const {
return mMargin;
}
// Increment the number of similar allocated collision shapes
inline void CollisionShape::incrementNbSimilarCreatedShapes() {
mNbSimilarCreatedShapes++;
}
// Decrement the number of similar allocated collision shapes
inline void CollisionShape::decrementNbSimilarCreatedShapes() {
mNbSimilarCreatedShapes--;
}
// Equality operator between two collision shapes.
/// This methods returns true only if the two collision shapes are of the same type and
/// of the same dimensions.
inline bool CollisionShape::operator==(const CollisionShape& otherCollisionShape) const {
// If the two collisions shapes are not of the same type (same derived classes)
// we return false
if (mType != otherCollisionShape.mType) return false;
assert(typeid(*this) == typeid(otherCollisionShape));
if (mMargin != otherCollisionShape.mMargin) return false;
// Check if the two shapes are equal
return otherCollisionShape.isEqualTo(*this);
}
// Return the parent body
inline CollisionBody* ProxyShape::getBody() const {
return mBody;
}
// Return the mass of the collision shape
inline decimal ProxyShape::getMass() const {
return mMass;
}
// Return the local to parent body transform
inline const Transform& ProxyShape::getLocalToBodyTransform() const {
return mLocalToBodyTransform;
}
}
#endif