implementation of GJK and EPA collision detection algorithm continued
git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@420 92aac97c-a6ce-11dd-a772-7fcde58d38e6
This commit is contained in:
parent
3fd0610925
commit
cd5fda4396
|
@ -24,6 +24,8 @@
|
|||
|
||||
// Libraries
|
||||
#include "EPAAlgorithm.h"
|
||||
#include "../GJK/GJKAlgorithm.h"
|
||||
#include "TrianglesStore.h"
|
||||
|
||||
// We want to use the ReactPhysics3D namespace
|
||||
using namespace reactphysics3d;
|
||||
|
@ -38,6 +40,39 @@ EPAAlgorithm::~EPAAlgorithm() {
|
|||
|
||||
}
|
||||
|
||||
// Decide if the origin is in the tetrahedron
|
||||
// Return 0 if the origin is in the tetrahedron and return the number (1,2,3 or 4) of
|
||||
// the vertex that is wrong if the origin is not in the tetrahedron
|
||||
int EPAAlgorithm::isOriginInTetrahedron(const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, const Vector3D& p4) const {
|
||||
|
||||
// Check vertex 1
|
||||
Vector3D normal1 = (p2-p1).cross(p3-p1);
|
||||
if (normal1.dot(p1) > 0.0 == normal1.dot(p4) > 0.0) {
|
||||
return 4;
|
||||
}
|
||||
|
||||
// Check vertex 2
|
||||
Vector3D normal2 = (p4-p2).cross(p3-p2);
|
||||
if (normal2.dot(p2) > 0.0 == normal2.dot(p1) > 0.0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Check vertex 3
|
||||
Vector3D normal3 = (p4-p3).cross(p1-p3);
|
||||
if (normal3.dot(p3) > 0.0 == normal3.dot(p2) > 0.0) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
// Check vertex 4
|
||||
Vector3D normal4 = (p2-p4).cross(p1-p4);
|
||||
if (normal4.dot(p4) > 0.0 == normal4.dot(p3) > 0.0) {
|
||||
return 3;
|
||||
}
|
||||
|
||||
// The origin is in the tetrahedron, we return 0
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Compute the penetration depth with the EPA algorithms
|
||||
// This method computes the penetration depth and contact points between two
|
||||
// enlarged objects (with margin) where the original objects (without margin)
|
||||
|
@ -50,7 +85,9 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons
|
|||
Vector3D suppPointsA[MAX_SUPPORT_POINTS]; // Support points of object A in local coordinates
|
||||
Vector3D suppPointsB[MAX_SUPPORT_POINTS]; // Support points of object B in local coordinates
|
||||
Vector3D points[MAX_SUPPORT_POINTS]; // Current points
|
||||
|
||||
TrianglesStore triangleStore; // Store the triangles
|
||||
TriangleEPA* triangleHeap[MAX_FACETS]; // Heap that contains the face candidate of the EPA algorithm
|
||||
|
||||
// TODO : Check that we call all the supportPoint() function with a margin
|
||||
|
||||
// Get the simplex computed previously by the GJK algorithm
|
||||
|
@ -62,7 +99,12 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons
|
|||
// Number of triangles in the polytope
|
||||
unsigned int nbTriangles = 0;
|
||||
|
||||
// Select an action according to the number of points in the simplex computed with GJK algorithm
|
||||
// Clear the storing of triangles
|
||||
triangleStore.clear();
|
||||
|
||||
// Select an action according to the number of points in the simplex
|
||||
// computed with GJK algorithm in order to obtain an initial polytope for
|
||||
// The EPA algorithm.
|
||||
switch(nbVertices) {
|
||||
case 1:
|
||||
// Only one point in the simplex (which should be the origin). We have a touching contact
|
||||
|
@ -70,7 +112,270 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons
|
|||
return false;
|
||||
|
||||
case 2: {
|
||||
|
||||
// The simplex returned by GJK is a line segment d containing the origin.
|
||||
// We add two additional support points to construct a hexahedron (two tetrahedron
|
||||
// glued together with triangle faces. The idea is to compute three different vectors
|
||||
// v1, v2 and v3 that are orthogonal to the segment d. The three vectors are relatively
|
||||
// rotated of 120 degree around the d segment. The the three new points to
|
||||
// construct the polytope are the three support points in those three directions
|
||||
// v1, v2 and v3.
|
||||
|
||||
// Direction of the segment
|
||||
Vector3D d = (points[1] - points[0]).getUnit();
|
||||
|
||||
// Choose the coordinate axis from the minimal absolute component of the vector d
|
||||
int minAxis = d.getAbsoluteVector().getMinAxis();
|
||||
|
||||
// Compute sin(60)
|
||||
const double sin60 = sqrt(3.0) * 0.5;
|
||||
|
||||
// Create a rotation quaternion to rotate the vector v1 to get the vectors
|
||||
// v2 and v3
|
||||
Quaternion rotationQuat(d.getX() * sin60, d.getY() * sin60, d.getZ() * sin60, 0.5);
|
||||
|
||||
// Construct the corresponding rotation matrix
|
||||
Matrix3x3 rotationMat = rotationQuat.getMatrix();
|
||||
|
||||
// Compute the vector v1, v2, v3
|
||||
Vector3D v1 = d.cross(Vector3D(minAxis == 0, minAxis == 1, minAxis == 2));
|
||||
Vector3D v2 = rotationMat * v1;
|
||||
Vector3D v3 = rotationMat * v2;
|
||||
|
||||
// Compute the support point in the direction of v1
|
||||
suppPointsA[2] = boundingVolume1->getSupportPoint(v1, OBJECT_MARGIN);
|
||||
suppPointsB[2] = boundingVolume2->getSupportPoint(v1.getOpposite(), OBJECT_MARGIN);
|
||||
points[2] = suppPointsA[2] - suppPointsB[2];
|
||||
|
||||
// Compute the support point in the direction of v2
|
||||
suppPointsA[3] = boundingVolume1->getSupportPoint(v2, OBJECT_MARGIN);
|
||||
suppPointsB[3] = boundingVolume2->getSupportPoint(v2.getOpposite(), OBJECT_MARGIN);
|
||||
points[3] = suppPointsA[3] - suppPointsB[3];
|
||||
|
||||
// Compute the support point in the direction of v3
|
||||
suppPointsA[4] = boundingVolume1->getSupportPoint(v3, OBJECT_MARGIN);
|
||||
suppPointsB[4] = boundingVolume2->getSupportPoint(v3.getOpposite(), OBJECT_MARGIN);
|
||||
points[4] = suppPointsA[4] - suppPointsB[4];
|
||||
|
||||
// Now we have an hexahedron (two tetrahedron glued together). We can simply keep the
|
||||
// tetrahedron that contains the origin in order that the initial polytope of the
|
||||
// EPA algorithm is a tetrahedron, which is simpler to deal with.
|
||||
|
||||
// If the origin is in the tetrahedron of points 0, 2, 3, 4
|
||||
if (isOriginInTetrahedron(points[0], points[2], points[3], points[4]) == 0) {
|
||||
// We use the point 4 instead of point 1 for the initial tetrahedron
|
||||
suppPointsA[1] = suppPointsA[4];
|
||||
suppPointsB[1] = suppPointsB[4];
|
||||
points[1] = points[4];
|
||||
}
|
||||
else if (isOriginInTetrahedron(points[1], points[2], points[3], points[4]) == 0) { // If the origin is in the tetrahedron of points 1, 2, 3, 4
|
||||
// We use the point 4 instead of point 0 for the initial tetrahedron
|
||||
suppPointsA[0] = suppPointsA[0];
|
||||
suppPointsB[0] = suppPointsB[0];
|
||||
points[0] = points[0];
|
||||
}
|
||||
else {
|
||||
// The origin is not in the initial polytope
|
||||
return false;
|
||||
}
|
||||
|
||||
// The polytope contains now 4 vertices
|
||||
nbVertices = 4;
|
||||
}
|
||||
case 4: {
|
||||
// The simplex computed by the GJK algorithm is a tetrahedron. Here we check
|
||||
// if this tetrahedron contains the origin. If it is the case, we keep it and
|
||||
// otherwise we remove the wrong vertex of the tetrahedron and go in the case
|
||||
// where the GJK algorithm compute a simplex of three vertices.
|
||||
|
||||
// Check if the tetrahedron contains the origin (or wich is the wrong vertex otherwise)
|
||||
int badVertex = isOriginInTetrahedron(points[0], points[1], points[2], points[3]);
|
||||
|
||||
// If the origin is in the tetrahedron
|
||||
if (badVertex == 0) {
|
||||
// The tetrahedron is a correct initial polytope for the EPA algorithm.
|
||||
// Therefore, we construct the tetrahedron.
|
||||
|
||||
// Comstruct the 4 triangle faces of the tetrahedron
|
||||
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 2);
|
||||
TriangleEPA* face1 = triangleStore.newTriangle(points, 0, 3, 1);
|
||||
TriangleEPA* face2 = triangleStore.newTriangle(points, 0, 2, 3);
|
||||
TriangleEPA* face3 = triangleStore.newTriangle(points, 1, 3, 2);
|
||||
|
||||
// If the constructed tetrahedron is not correct
|
||||
if (!(face0 && face1 && face2 && face3 && face0->getDistSquare() > 0.0 &&
|
||||
face1->getDistSquare() > 0.0 && face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Associate the edges of neighbouring triangle faces
|
||||
EdgeEPA(face0, 0).link(EdgeEPA(face1, 2));
|
||||
EdgeEPA(face0, 1).link(EdgeEPA(face3, 2));
|
||||
EdgeEPA(face0, 2).link(EdgeEPA(face2, 0));
|
||||
EdgeEPA(face1, 0).link(EdgeEPA(face2, 2));
|
||||
EdgeEPA(face1, 1).link(EdgeEPA(face3, 0));
|
||||
EdgeEPA(face2, 1).link(EdgeEPA(face3, 1));
|
||||
|
||||
// Add the triangle faces in the candidate heap
|
||||
addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
// If the tetrahedron contains a wrong vertex (the origin is not inside the tetrahedron)
|
||||
if (badVertex < 4) {
|
||||
// Replace the wrong vertex with the point 5 (if it exists)
|
||||
suppPointsA[badVertex-1] = suppPointsA[4];
|
||||
suppPointsB[badVertex-1] = suppPointsB[4];
|
||||
points[badVertex-1] = points[4];
|
||||
}
|
||||
|
||||
// We have removed the wrong vertex
|
||||
nbVertices = 3;
|
||||
}
|
||||
case 3: {
|
||||
// The GJK algorithm returned a triangle that contains the origin.
|
||||
// We need two new vertices to obtain a hexahedron. The two new vertices
|
||||
// are the support points in the "n" and "-n" direction where "n" is the
|
||||
// normal of the triangle.
|
||||
|
||||
// Compute the normal of the triangle
|
||||
Vector3D v1 = points[1] - points[0];
|
||||
Vector3D v2 = points[2] - points[0];
|
||||
Vector3D n = v1.cross(v2);
|
||||
|
||||
// Compute the two new vertices to obtain a hexahedron
|
||||
suppPointsA[3] = boundingVolume1->getSupportPoint(n, OBJECT_MARGIN);
|
||||
suppPointsB[3] = boundingVolume2->getSupportPoint(n.getOpposite(), OBJECT_MARGIN);
|
||||
points[3] = suppPointsA[3] - suppPointsB[3];
|
||||
suppPointsA[4] = boundingVolume1->getSupportPoint(n.getOpposite(), OBJECT_MARGIN);
|
||||
suppPointsB[4] = boundingVolume2->getSupportPoint(n, OBJECT_MARGIN);
|
||||
points[4] = suppPointsA[4] - suppPointsB[4];
|
||||
|
||||
// Construct the triangle faces
|
||||
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 3);
|
||||
TriangleEPA* face1 = triangleStore.newTriangle(points, 1, 2, 3);
|
||||
TriangleEPA* face2 = triangleStore.newTriangle(points, 2, 0, 3);
|
||||
TriangleEPA* face3 = triangleStore.newTriangle(points, 0, 2, 4);
|
||||
TriangleEPA* face4 = triangleStore.newTriangle(points, 2, 1, 4);
|
||||
TriangleEPA* face5 = triangleStore.newTriangle(points, 1, 0, 4);
|
||||
|
||||
// If the polytope hasn't been correctly constructed
|
||||
if (!(face0 && face1 && face2 && face3 && face4 && face5 &&
|
||||
face0->getDistSquare() > 0.0 && face1->getDistSquare() > 0.0 &&
|
||||
face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0 &&
|
||||
face4->getDistSquare() > 0.0 && face5->getDistSquare() > 0.0)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Associate the edges of neighbouring faces
|
||||
EdgeEPA(face0, 1).link(EdgeEPA(face1, 2));
|
||||
EdgeEPA(face1, 1).link(EdgeEPA(face2, 2));
|
||||
EdgeEPA(face2, 1).link(EdgeEPA(face0, 2));
|
||||
EdgeEPA(face0, 0).link(EdgeEPA(face5, 0));
|
||||
EdgeEPA(face1, 0).link(EdgeEPA(face4, 0));
|
||||
EdgeEPA(face2, 0).link(EdgeEPA(face3, 0));
|
||||
EdgeEPA(face3, 1).link(EdgeEPA(face4, 2));
|
||||
EdgeEPA(face4, 1).link(EdgeEPA(face5, 2));
|
||||
EdgeEPA(face5, 1).link(EdgeEPA(face3, 2));
|
||||
|
||||
// Add the candidate faces in the heap
|
||||
addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face4, triangleHeap, nbTriangles, DBL_MAX);
|
||||
addFaceCandidate(face5, triangleHeap, nbTriangles, DBL_MAX);
|
||||
|
||||
nbVertices = 5;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// At this point, we have a polytope that contains the origin. Therefore, we
|
||||
// can run the EPA algorithm.
|
||||
|
||||
if (nbTriangles == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
TriangleEPA* triangle = 0;
|
||||
double upperBoundSquarePenDepth = DBL_MAX;
|
||||
|
||||
do {
|
||||
triangle = triangleHeap[0];
|
||||
|
||||
// Get the next candidate face (the face closest to the origin)
|
||||
std::pop_heap(&triangleHeap[0], &triangleHeap[nbTriangles], triangleComparison);
|
||||
nbTriangles--;
|
||||
|
||||
// If the candidate face in the heap is not obsolete
|
||||
if (!triangle->getIsObsolete()) {
|
||||
// If we have reached the maximum number of support points
|
||||
if (nbVertices == MAX_SUPPORT_POINTS) {
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute the support point of the Minkowski difference (A-B) in the closest point direction
|
||||
suppPointsA[nbVertices] = boundingVolume1->getSupportPoint(triangle->getClosestPoint(), OBJECT_MARGIN);
|
||||
suppPointsB[nbVertices] = boundingVolume2->getSupportPoint(triangle->getClosestPoint().getOpposite());
|
||||
points[nbVertices] = suppPointsA[nbVertices] - suppPointsB[nbVertices];
|
||||
|
||||
int indexNewVertex = nbVertices;
|
||||
nbVertices++;
|
||||
|
||||
// Update the upper bound of the penetration depth
|
||||
double wDotv = points[indexNewVertex].dot(triangle->getClosestPoint());
|
||||
assert(wDotv > 0.0);
|
||||
double wDotVSquare = wDotv * wDotv / triangle->getDistSquare();
|
||||
if (wDotVSquare < upperBoundSquarePenDepth) {
|
||||
upperBoundSquarePenDepth = wDotVSquare;
|
||||
}
|
||||
|
||||
// Compute the error
|
||||
double error = wDotv - triangle->getDistSquare();
|
||||
if (error <= std::max(tolerance, REL_ERROR_SQUARE * wDotv) ||
|
||||
points[indexNewVertex] == points[(*triangle)[0]] ||
|
||||
points[indexNewVertex] == points[(*triangle)[1]] ||
|
||||
points[indexNewVertex] == points[(*triangle)[2]]) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Now, we compute the silhouette cast by the new vertex.
|
||||
// The current triangle face will not be in the convex hull.
|
||||
// We start the local recursive silhouette algorithm from
|
||||
// the current triangle face.
|
||||
int i = triangleStore.getNbTriangles();
|
||||
if (!triangle->computeSilhouette(points, indexNewVertex, triangleStore)) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Construct the new polytope by constructing triangle faces from the
|
||||
// silhouette to the new vertex of the polytope in order that the new
|
||||
// polytope is always convex
|
||||
while(i != triangleStore.getNbTriangles()) {
|
||||
TriangleEPA* newTriangle = &triangleStore[i];
|
||||
|
||||
addFaceCandidate(newTriangle, triangleHeap, nbTriangles, upperBoundSquarePenDepth);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
} while(nbTriangles > 0 && triangleHeap[0]->getDistSquare() <= upperBoundSquarePenDepth);
|
||||
|
||||
// Compute the contact info
|
||||
v = triangle->getClosestPoint();
|
||||
Vector3D pA = triangle->computeClosestPointOfObject(suppPointsA);
|
||||
Vector3D pB = triangle->computeClosestPointOfObject(suppPointsB);
|
||||
Vector3D diff = pB - pA;
|
||||
Vector3D normal = diff.getUnit();
|
||||
double penetrationDepth = diff.length();
|
||||
assert(penetrationDepth > 0.0);
|
||||
contactInfo = new ContactInfo(boundingVolume1->getBodyPointer(), boundingVolume2->getBodyPointer(),
|
||||
normal, penetrationDepth, pA, pB);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -30,6 +30,8 @@
|
|||
#include "../../body/NarrowBoundingVolume.h"
|
||||
#include "../ContactInfo.h"
|
||||
#include "../../mathematics/mathematics.h"
|
||||
#include "TriangleEPA.h"
|
||||
#include <algorithm>
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
@ -38,6 +40,20 @@ namespace reactphysics3d {
|
|||
const unsigned int MAX_SUPPORT_POINTS = 100; // Maximum number of support points of the polytope
|
||||
const unsigned int MAX_FACETS = 200; // Maximum number of facets of the polytope
|
||||
|
||||
|
||||
// Class TriangleComparison that allow the comparison of two triangles in the heap
|
||||
// The comparison between two triangles is made using their square distance to the closest
|
||||
// point to the origin. The goal is that in the heap, the first triangle is the one with the
|
||||
// smallest square distance.
|
||||
class TriangleComparison {
|
||||
public:
|
||||
// Comparison operator
|
||||
bool operator()(const TriangleEPA* face1, const TriangleEPA* face2) {
|
||||
return (face1->getDistSquare() > face2->getDistSquare());
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class EPAAlgorithm :
|
||||
This class is the implementation of the Expanding Polytope Algorithm (EPA).
|
||||
|
@ -54,10 +70,12 @@ const unsigned int MAX_FACETS = 200; // Maximum number of facets of t
|
|||
*/
|
||||
class EPAAlgorithm {
|
||||
private:
|
||||
|
||||
TriangleComparison triangleComparison; // Triangle comparison operator
|
||||
|
||||
bool isOrigininInTetrahedron(const Vector3D& p1, const Vector3D& p2,
|
||||
const Vector3D& p3, const Vector3D& p4) const; // Return true if the origin is in the tetrahedron
|
||||
void addFaceCandidate(TriangleEPA* triangle, TriangleEPA** heap,
|
||||
uint& nbTriangles, double upperBoundSquarePenDepth); // Add a triangle face in the candidate triangle heap
|
||||
int isOriginInTetrahedron(const Vector3D& p1, const Vector3D& p2,
|
||||
const Vector3D& p3, const Vector3D& p4) const; // Decide if the origin is in the tetrahedron
|
||||
|
||||
public:
|
||||
EPAAlgorithm(); // Constructor
|
||||
|
@ -68,6 +86,20 @@ class EPAAlgorithm {
|
|||
Vector3D& v, ContactInfo*& contactInfo); // Compute the penetration depth with EPA algorithm
|
||||
};
|
||||
|
||||
// Add a triangle face in the candidate triangle heap in the EPA algorithm
|
||||
inline void EPAAlgorithm::addFaceCandidate(TriangleEPA* triangle, TriangleEPA** heap,
|
||||
uint& nbTriangles, double upperBoundSquarePenDepth) {
|
||||
|
||||
// If the closest point of the affine hull of triangle points is internal to the triangle and
|
||||
// if the distance of the closest point from the origin is at most the penetration depth upper bound
|
||||
if (triangle->isClosestPointInternalToTriangle() && triangle->getDistSquare() <= upperBoundSquarePenDepth) {
|
||||
// Add the triangle face to the list of candidates
|
||||
heap[nbTriangles] = triangle;
|
||||
nbTriangles++;
|
||||
std::push_heap(&heap[0], &heap[nbTriangles], triangleComparison);
|
||||
}
|
||||
}
|
||||
|
||||
} // End of ReactPhysics3D namespace
|
||||
|
||||
#endif
|
||||
|
|
|
@ -118,8 +118,8 @@ inline bool TriangleEPA::isVisibleFromVertex(const Vector3D* vertices, uint inde
|
|||
// Compute the point of an object closest to the origin
|
||||
inline Vector3D TriangleEPA::computeClosestPointOfObject(const Vector3D* supportPointsOfObject) const {
|
||||
const Vector3D& p0 = supportPointsOfObject[indicesVertices[0]];
|
||||
return p0 + (lambda1 * (supportPointsOfObject[indicesVertices[1]] - p0) +
|
||||
lambda2 * 1.0/det * (supportPointsOfObject[indicesVertices[2]] - p0));
|
||||
return p0 + 1.0/det * (lambda1 * (supportPointsOfObject[indicesVertices[1]] - p0) +
|
||||
lambda2 * (supportPointsOfObject[indicesVertices[2]] - p0));
|
||||
}
|
||||
|
||||
// Access operator
|
||||
|
|
Loading…
Reference in New Issue
Block a user