reactphysics3d/src/body/RigidBody.h

395 lines
14 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_RIGID_BODY_H
#define REACTPHYSICS3D_RIGID_BODY_H
// Libraries
#include <cassert>
#include "CollisionBody.h"
#include "../engine/Material.h"
#include "../mathematics/mathematics.h"
#include "../memory/MemoryAllocator.h"
/// Namespace reactphysics3d
namespace reactphysics3d {
// Class declarations
struct JointListElement;
class Joint;
// Class RigidBody
/**
* This class represents a rigid body of the physics
* engine. A rigid body is a non-deformable body that
* has a constant mass. This class inherits from the
* CollisionBody class.
*/
class RigidBody : public CollisionBody {
protected :
// -------------------- Attributes -------------------- //
/// Intial mass of the body
decimal mInitMass;
/// Linear velocity of the body
Vector3 mLinearVelocity;
/// Angular velocity of the body
Vector3 mAngularVelocity;
/// Current external force on the body
Vector3 mExternalForce;
/// Current external torque on the body
Vector3 mExternalTorque;
/// Local inertia tensor of the body (in local-space)
Matrix3x3 mInertiaTensorLocal;
/// Inverse of the inertia tensor of the body
Matrix3x3 mInertiaTensorLocalInverse;
/// Inverse of the mass of the body
decimal mMassInverse;
/// True if the gravity needs to be applied to this rigid body
bool mIsGravityEnabled;
/// Material properties of the rigid body
Material mMaterial;
/// Linear velocity damping factor
decimal mLinearDamping;
/// Angular velocity damping factor
decimal mAngularDamping;
/// First element of the linked list of joints involving this body
JointListElement* mJointsList;
// -------------------- Methods -------------------- //
/// Private copy-constructor
RigidBody(const RigidBody& body);
/// Private assignment operator
RigidBody& operator=(const RigidBody& body);
/// Remove a joint from the joints list
void removeJointFromJointsList(MemoryAllocator& memoryAllocator, const Joint* joint);
public :
// -------------------- Methods -------------------- //
/// Constructor
RigidBody(const Transform& transform, decimal mass, CollisionShape* collisionShape,
bodyindex id);
/// Destructor
virtual ~RigidBody();
/// Set the type of the body (static, kinematic or dynamic)
void setType(BodyType type);
/// Return the mass of the body
decimal getMass() const;
/// Set the mass of the body
void setMass(decimal mass);
/// Return the linear velocity
Vector3 getLinearVelocity() const;
/// Set the linear velocity of the body.
void setLinearVelocity(const Vector3& linearVelocity);
/// Return the angular velocity
Vector3 getAngularVelocity() const;
/// Set the angular velocity.
void setAngularVelocity(const Vector3& angularVelocity);
/// Return the local inertia tensor of the body (in body coordinates)
const Matrix3x3& getInertiaTensorLocal() const;
/// Set the local inertia tensor of the body (in body coordinates)
void setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal);
/// Return the inertia tensor in world coordinates.
Matrix3x3 getInertiaTensorWorld() const;
/// Return the inverse of the inertia tensor in world coordinates.
Matrix3x3 getInertiaTensorInverseWorld() const;
/// Return true if the gravity needs to be applied to this rigid body
bool isGravityEnabled() const;
/// Set the variable to know if the gravity is applied to this rigid body
void enableGravity(bool isEnabled);
/// Return a reference to the material properties of the rigid body
Material& getMaterial();
/// Set a new material for this rigid body
void setMaterial(const Material& material);
/// Return the linear velocity damping factor
decimal getLinearDamping() const;
/// Set the linear damping factor
void setLinearDamping(decimal linearDamping);
/// Return the angular velocity damping factor
decimal getAngularDamping() const;
/// Set the angular damping factor
void setAngularDamping(decimal angularDamping);
/// Return the first element of the linked list of joints involving this body
const JointListElement* getJointsList() const;
/// Set the variable to know whether or not the body is sleeping
virtual void setIsSleeping(bool isSleeping);
/// Apply an external force to the body at its gravity center.
void applyForceToCenter(const Vector3& force);
/// Apply an external force to the body at a given point (in world-space coordinates).
void applyForce(const Vector3& force, const Vector3& point);
/// Apply an external torque to the body.
void applyTorque(const Vector3& torque);
// -------------------- Friendship -------------------- //
friend class DynamicsWorld;
friend class ContactSolver;
friend class BallAndSocketJoint;
friend class SliderJoint;
friend class HingeJoint;
friend class FixedJoint;
};
// Method that return the mass of the body
inline decimal RigidBody::getMass() const {
return mInitMass;
}
// Return the linear velocity
inline Vector3 RigidBody::getLinearVelocity() const {
return mLinearVelocity;
}
// Return the angular velocity of the body
inline Vector3 RigidBody::getAngularVelocity() const {
return mAngularVelocity;
}
// Set the angular velocity.
/// You should only call this method for a kinematic body. Otherwise, it
/// will do nothing.
inline void RigidBody::setAngularVelocity(const Vector3& angularVelocity) {
// If it is a kinematic body
if (mType == KINEMATIC) {
mAngularVelocity = angularVelocity;
}
}
// Return the local inertia tensor of the body (in body coordinates)
inline const Matrix3x3& RigidBody::getInertiaTensorLocal() const {
return mInertiaTensorLocal;
}
// Return the inertia tensor in world coordinates.
/// The inertia tensor I_w in world coordinates is computed
/// with the local inertia tensor I_b in body coordinates
/// by I_w = R * I_b * R^T
/// where R is the rotation matrix (and R^T its transpose) of
/// the current orientation quaternion of the body
inline Matrix3x3 RigidBody::getInertiaTensorWorld() const {
// Compute and return the inertia tensor in world coordinates
return mTransform.getOrientation().getMatrix() * mInertiaTensorLocal *
mTransform.getOrientation().getMatrix().getTranspose();
}
// Return the inverse of the inertia tensor in world coordinates.
/// The inertia tensor I_w in world coordinates is computed with the
/// local inverse inertia tensor I_b^-1 in body coordinates
/// by I_w = R * I_b^-1 * R^T
/// where R is the rotation matrix (and R^T its transpose) of the
/// current orientation quaternion of the body
// TODO : DO NOT RECOMPUTE THE MATRIX MULTIPLICATION EVERY TIME. WE NEED TO STORE THE
// INVERSE WORLD TENSOR IN THE CLASS AND UPLDATE IT WHEN THE ORIENTATION OF THE BODY CHANGES
inline Matrix3x3 RigidBody::getInertiaTensorInverseWorld() const {
// Compute and return the inertia tensor in world coordinates
return mTransform.getOrientation().getMatrix() * mInertiaTensorLocalInverse *
mTransform.getOrientation().getMatrix().getTranspose();
}
// Set the linear velocity of the rigid body.
/// You should only call this method for a kinematic body. Otherwise, it
/// will do nothing.
inline void RigidBody::setLinearVelocity(const Vector3& linearVelocity) {
// If it is a kinematic body
if (mType == KINEMATIC) {
// Update the linear velocity of the current body state
mLinearVelocity = linearVelocity;
}
}
// Return true if the gravity needs to be applied to this rigid body
inline bool RigidBody::isGravityEnabled() const {
return mIsGravityEnabled;
}
// Set the variable to know if the gravity is applied to this rigid body
inline void RigidBody::enableGravity(bool isEnabled) {
mIsGravityEnabled = isEnabled;
}
// Return a reference to the material properties of the rigid body
inline Material& RigidBody::getMaterial() {
return mMaterial;
}
// Set a new material for this rigid body
inline void RigidBody::setMaterial(const Material& material) {
mMaterial = material;
}
// Return the linear velocity damping factor
inline decimal RigidBody::getLinearDamping() const {
return mLinearDamping;
}
// Set the linear damping factor
inline void RigidBody::setLinearDamping(decimal linearDamping) {
assert(linearDamping >= decimal(0.0));
mLinearDamping = linearDamping;
}
// Return the angular velocity damping factor
inline decimal RigidBody::getAngularDamping() const {
return mAngularDamping;
}
// Set the angular damping factor
inline void RigidBody::setAngularDamping(decimal angularDamping) {
assert(angularDamping >= decimal(0.0));
mAngularDamping = angularDamping;
}
// Return the first element of the linked list of joints involving this body
inline const JointListElement* RigidBody::getJointsList() const {
return mJointsList;
}
// Set the variable to know whether or not the body is sleeping
inline void RigidBody::setIsSleeping(bool isSleeping) {
if (isSleeping) {
mLinearVelocity.setToZero();
mAngularVelocity.setToZero();
mExternalForce.setToZero();
mExternalTorque.setToZero();
}
Body::setIsSleeping(isSleeping);
}
// Apply an external force to the body at its gravity center.
/// If the body is sleeping, calling this method will wake it up. Note that the
/// force will we added to the sum of the applied forces and that this sum will be
/// reset to zero at the end of each call of the DynamicsWorld::update() method.
/// You can only apply a force to a dynamic body otherwise, this method will do nothing.
inline void RigidBody::applyForceToCenter(const Vector3& force) {
// If it is not a dynamic body, we do nothing
if (mType != DYNAMIC) return;
// Awake the body if it was sleeping
if (mIsSleeping) {
setIsSleeping(false);
}
// Add the force
mExternalForce += force;
}
// Apply an external force to the body at a given point (in world-space coordinates).
/// If the point is not at the center of gravity of the body, it will also
/// generate some torque and therefore, change the angular velocity of the body.
/// If the body is sleeping, calling this method will wake it up. Note that the
/// force will we added to the sum of the applied forces and that this sum will be
/// reset to zero at the end of each call of the DynamicsWorld::update() method.
/// You can only apply a force to a dynamic body otherwise, this method will do nothing.
inline void RigidBody::applyForce(const Vector3& force, const Vector3& point) {
// If it is not a dynamic body, we do nothing
if (mType != DYNAMIC) return;
// Awake the body if it was sleeping
if (mIsSleeping) {
setIsSleeping(false);
}
// Add the force and torque
mExternalForce += force;
mExternalTorque += (point - mTransform.getPosition()).cross(force);
}
// Apply an external torque to the body.
/// If the body is sleeping, calling this method will wake it up. Note that the
/// force will we added to the sum of the applied torques and that this sum will be
/// reset to zero at the end of each call of the DynamicsWorld::update() method.
/// You can only apply a force to a dynamic body otherwise, this method will do nothing.
inline void RigidBody::applyTorque(const Vector3& torque) {
// If it is not a dynamic body, we do nothing
if (mType != DYNAMIC) return;
// Awake the body if it was sleeping
if (mIsSleeping) {
setIsSleeping(false);
}
// Add the torque
mExternalTorque += torque;
}
}
#endif