reactphysics3d/src/collision/shapes/TriangleShape.cpp

308 lines
15 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "TriangleShape.h"
#include "collision/ProxyShape.h"
#include "mathematics/mathematics_functions.h"
#include "collision/RaycastInfo.h"
#include "utils/Profiler.h"
#include "configuration.h"
#include <cassert>
using namespace reactphysics3d;
// Constructor
/**
* Do not use this constructor. It is supposed to be used internally only.
* Use a ConcaveMeshShape instead.
* @param point1 First point of the triangle
* @param point2 Second point of the triangle
* @param point3 Third point of the triangle
* @param verticesNormals The three vertices normals for smooth mesh collision
* @param margin The collision margin (in meters) around the collision shape
*/
TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId,
MemoryAllocator& allocator)
: ConvexPolyhedronShape(CollisionShapeName::TRIANGLE), mFaces{HalfEdgeStructure::Face(allocator), HalfEdgeStructure::Face(allocator)} {
mPoints[0] = vertices[0];
mPoints[1] = vertices[1];
mPoints[2] = vertices[2];
// Compute the triangle normal
mNormal = (vertices[1] - vertices[0]).cross(vertices[2] - vertices[0]);
mNormal.normalize();
mVerticesNormals[0] = verticesNormals[0];
mVerticesNormals[1] = verticesNormals[1];
mVerticesNormals[2] = verticesNormals[2];
// Faces
mFaces[0].faceVertices.reserve(3);
mFaces[0].faceVertices.add(0);
mFaces[0].faceVertices.add(1);
mFaces[0].faceVertices.add(2);
mFaces[0].edgeIndex = 0;
mFaces[1].faceVertices.reserve(3);
mFaces[1].faceVertices.add(0);
mFaces[1].faceVertices.add(2);
mFaces[1].faceVertices.add(1);
mFaces[1].edgeIndex = 1;
// Edges
for (uint i=0; i<6; i++) {
switch(i) {
case 0:
mEdges[0].vertexIndex = 0;
mEdges[0].twinEdgeIndex = 1;
mEdges[0].faceIndex = 0;
mEdges[0].nextEdgeIndex = 2;
break;
case 1:
mEdges[1].vertexIndex = 1;
mEdges[1].twinEdgeIndex = 0;
mEdges[1].faceIndex = 1;
mEdges[1].nextEdgeIndex = 5;
break;
case 2:
mEdges[2].vertexIndex = 1;
mEdges[2].twinEdgeIndex = 3;
mEdges[2].faceIndex = 0;
mEdges[2].nextEdgeIndex = 4;
break;
case 3:
mEdges[3].vertexIndex = 2;
mEdges[3].twinEdgeIndex = 2;
mEdges[3].faceIndex = 1;
mEdges[3].nextEdgeIndex = 1;
break;
case 4:
mEdges[4].vertexIndex = 2;
mEdges[4].twinEdgeIndex = 5;
mEdges[4].faceIndex = 0;
mEdges[4].nextEdgeIndex = 0;
break;
case 5:
mEdges[5].vertexIndex = 0;
mEdges[5].twinEdgeIndex = 4;
mEdges[5].faceIndex = 1;
mEdges[5].nextEdgeIndex = 3;
break;
}
}
mRaycastTestType = TriangleRaycastSide::FRONT;
mId = shapeId;
}
// This method compute the smooth mesh contact with a triangle in case one of the two collision
// shapes is a triangle. The idea in this case is to use a smooth vertex normal of the triangle mesh
// at the contact point instead of the triangle normal to avoid the internal edge collision issue.
// This method will return the new smooth world contact
// normal of the triangle and the the local contact point on the other shape.
void TriangleShape::computeSmoothTriangleMeshContact(const CollisionShape* shape1, const CollisionShape* shape2,
Vector3& localContactPointShape1, Vector3& localContactPointShape2,
const Transform& shape1ToWorld, const Transform& shape2ToWorld,
decimal penetrationDepth, Vector3& outSmoothVertexNormal) {
assert(shape1->getName() != CollisionShapeName::TRIANGLE || shape2->getName() != CollisionShapeName::TRIANGLE);
// If one the shape is a triangle
bool isShape1Triangle = shape1->getName() == CollisionShapeName::TRIANGLE;
if (isShape1Triangle || shape2->getName() == CollisionShapeName::TRIANGLE) {
const TriangleShape* triangleShape = isShape1Triangle ? static_cast<const TriangleShape*>(shape1):
static_cast<const TriangleShape*>(shape2);
// Compute the smooth triangle mesh contact normal and recompute the local contact point on the other shape
triangleShape->computeSmoothMeshContact(isShape1Triangle ? localContactPointShape1 : localContactPointShape2,
isShape1Triangle ? shape1ToWorld : shape2ToWorld,
isShape1Triangle ? shape2ToWorld.getInverse() : shape1ToWorld.getInverse(),
penetrationDepth, isShape1Triangle,
isShape1Triangle ? localContactPointShape2 : localContactPointShape1,
outSmoothVertexNormal);
}
}
// This method implements the technique described in Game Physics Pearl book
// by Gino van der Bergen and Dirk Gregorius to get smooth triangle mesh collision. The idea is
// to replace the contact normal of the triangle shape with the precomputed normal of the triangle
// mesh at this point. Then, we need to recompute the contact point on the other shape in order to
// stay aligned with the new contact normal. This method will return the new smooth world contact
// normal of the triangle and the the local contact point on the other shape.
void TriangleShape::computeSmoothMeshContact(Vector3 localContactPointTriangle, const Transform& triangleShapeToWorldTransform,
const Transform& worldToOtherShapeTransform, decimal penetrationDepth, bool isTriangleShape1,
Vector3& outNewLocalContactPointOtherShape, Vector3& outSmoothWorldContactTriangleNormal) const {
// Get the smooth contact normal of the mesh at the contact point on the triangle
Vector3 triangleLocalNormal = computeSmoothLocalContactNormalForTriangle(localContactPointTriangle);
// Convert the local contact normal into world-space
Vector3 triangleWorldNormal = triangleShapeToWorldTransform.getOrientation() * triangleLocalNormal;
// Penetration axis with direction from triangle to other shape
Vector3 triangleToOtherShapePenAxis = isTriangleShape1 ? outSmoothWorldContactTriangleNormal : -outSmoothWorldContactTriangleNormal;
// The triangle normal should be the one in the direction out of the current colliding face of the triangle
if (triangleWorldNormal.dot(triangleToOtherShapePenAxis) < decimal(0.0)) {
triangleWorldNormal = -triangleWorldNormal;
triangleLocalNormal = -triangleLocalNormal;
}
// Compute the final contact normal from shape 1 to shape 2
outSmoothWorldContactTriangleNormal = isTriangleShape1 ? triangleWorldNormal : -triangleWorldNormal;
// Re-align the local contact point on the other shape such that it is aligned along the new contact normal
Vector3 otherShapePointTriangleSpace = localContactPointTriangle - triangleLocalNormal * penetrationDepth;
Vector3 otherShapePoint = worldToOtherShapeTransform * triangleShapeToWorldTransform * otherShapePointTriangleSpace;
outNewLocalContactPointOtherShape.setAllValues(otherShapePoint.x, otherShapePoint.y, otherShapePoint.z);
}
// Get a smooth contact normal for collision for a triangle of the mesh
/// This is used to avoid the internal edges issue that occurs when a shape is colliding with
/// several triangles of a concave mesh. If the shape collide with an edge of the triangle for instance,
/// the computed contact normal from this triangle edge is not necessarily in the direction of the surface
/// normal of the mesh at this point. The idea to solve this problem is to use the real (smooth) surface
/// normal of the mesh at this point as the contact normal. This technique is described in the chapter 5
/// of the Game Physics Pearl book by Gino van der Bergen and Dirk Gregorius. The vertices normals of the
/// mesh are either provided by the user or precomputed if the user did not provide them. Note that we only
/// use the interpolated normal if the contact point is on an edge of the triangle. If the contact is in the
/// middle of the triangle, we return the true triangle normal.
Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3& localContactPoint) const {
// Compute the barycentric coordinates of the point in the triangle
decimal u, v, w;
computeBarycentricCoordinatesInTriangle(mPoints[0], mPoints[1], mPoints[2], localContactPoint, u, v, w);
// If the contact is in the middle of the triangle face (not on the edges)
if (u > MACHINE_EPSILON && v > MACHINE_EPSILON && w > MACHINE_EPSILON) {
// We return the true triangle face normal (not the interpolated one)
return mNormal;
}
// We compute the contact normal as the barycentric interpolation of the three vertices normals
return (u * mVerticesNormals[0] + v * mVerticesNormals[1] + w * mVerticesNormals[2]).getUnit();
}
// Update the AABB of a body using its collision shape
/**
* @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape
* computed in world-space coordinates
* @param transform Transform used to compute the AABB of the collision shape
*/
void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) const {
const Vector3 worldPoint1 = transform * mPoints[0];
const Vector3 worldPoint2 = transform * mPoints[1];
const Vector3 worldPoint3 = transform * mPoints[2];
const Vector3 xAxis(worldPoint1.x, worldPoint2.x, worldPoint3.x);
const Vector3 yAxis(worldPoint1.y, worldPoint2.y, worldPoint3.y);
const Vector3 zAxis(worldPoint1.z, worldPoint2.z, worldPoint3.z);
aabb.setMin(Vector3(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue()));
aabb.setMax(Vector3(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue()));
}
// Raycast method with feedback information
/// This method use the line vs triangle raycasting technique described in
/// Real-time Collision Detection by Christer Ericson.
bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const {
RP3D_PROFILE("TriangleShape::raycast()", mProfiler);
const Vector3 pq = ray.point2 - ray.point1;
const Vector3 pa = mPoints[0] - ray.point1;
const Vector3 pb = mPoints[1] - ray.point1;
const Vector3 pc = mPoints[2] - ray.point1;
// Test if the line PQ is inside the eges BC, CA and AB. We use the triple
// product for this test.
const Vector3 m = pq.cross(pc);
decimal u = pb.dot(m);
if (mRaycastTestType == TriangleRaycastSide::FRONT) {
if (u < decimal(0.0)) return false;
}
else if (mRaycastTestType == TriangleRaycastSide::BACK) {
if (u > decimal(0.0)) return false;
}
decimal v = -pa.dot(m);
if (mRaycastTestType == TriangleRaycastSide::FRONT) {
if (v < decimal(0.0)) return false;
}
else if (mRaycastTestType == TriangleRaycastSide::BACK) {
if (v > decimal(0.0)) return false;
}
else if (mRaycastTestType == TriangleRaycastSide::FRONT_AND_BACK) {
if (!sameSign(u, v)) return false;
}
decimal w = pa.dot(pq.cross(pb));
if (mRaycastTestType == TriangleRaycastSide::FRONT) {
if (w < decimal(0.0)) return false;
}
else if (mRaycastTestType == TriangleRaycastSide::BACK) {
if (w > decimal(0.0)) return false;
}
else if (mRaycastTestType == TriangleRaycastSide::FRONT_AND_BACK) {
if (!sameSign(u, w)) return false;
}
// If the line PQ is in the triangle plane (case where u=v=w=0)
if (approxEqual(u, 0) && approxEqual(v, 0) && approxEqual(w, 0)) return false;
// Compute the barycentric coordinates (u, v, w) to determine the
// intersection point R, R = u * a + v * b + w * c
decimal denom = decimal(1.0) / (u + v + w);
u *= denom;
v *= denom;
w *= denom;
// Compute the local hit point using the barycentric coordinates
const Vector3 localHitPoint = u * mPoints[0] + v * mPoints[1] + w * mPoints[2];
const decimal hitFraction = (localHitPoint - ray.point1).length() / pq.length();
if (hitFraction < decimal(0.0) || hitFraction > ray.maxFraction) return false;
Vector3 localHitNormal = (mPoints[1] - mPoints[0]).cross(mPoints[2] - mPoints[0]);
if (localHitNormal.dot(pq) > decimal(0.0)) localHitNormal = -localHitNormal;
raycastInfo.body = proxyShape->getBody();
raycastInfo.proxyShape = proxyShape;
raycastInfo.worldPoint = localHitPoint;
raycastInfo.hitFraction = hitFraction;
raycastInfo.worldNormal = localHitNormal;
return true;
}