reactphysics3d/src/collision/shapes/ConcaveMeshShape.h

301 lines
11 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONCAVE_MESH_SHAPE_H
#define REACTPHYSICS3D_CONCAVE_MESH_SHAPE_H
// Libraries
#include "ConcaveShape.h"
#include "collision/broadphase/DynamicAABBTree.h"
#include "containers/List.h"
namespace reactphysics3d {
// Declarations
class ConcaveMeshShape;
class Profiler;
class TriangleShape;
class TriangleMesh;
// class ConvexTriangleAABBOverlapCallback
class ConvexTriangleAABBOverlapCallback : public DynamicAABBTreeOverlapCallback {
private:
TriangleCallback& mTriangleTestCallback;
// Reference to the concave mesh shape
const ConcaveMeshShape& mConcaveMeshShape;
// Reference to the Dynamic AABB tree
const DynamicAABBTree& mDynamicAABBTree;
public:
// Constructor
ConvexTriangleAABBOverlapCallback(TriangleCallback& triangleCallback, const ConcaveMeshShape& concaveShape,
const DynamicAABBTree& dynamicAABBTree)
: mTriangleTestCallback(triangleCallback), mConcaveMeshShape(concaveShape), mDynamicAABBTree(dynamicAABBTree) {
}
// Called when a overlapping node has been found during the call to
// DynamicAABBTree:reportAllShapesOverlappingWithAABB()
virtual void notifyOverlappingNode(int nodeId) override;
};
/// Class ConcaveMeshRaycastCallback
class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback {
private :
List<int32> mHitAABBNodes;
const DynamicAABBTree& mDynamicAABBTree;
const ConcaveMeshShape& mConcaveMeshShape;
ProxyShape* mProxyShape;
RaycastInfo& mRaycastInfo;
const Ray& mRay;
bool mIsHit;
MemoryAllocator& mAllocator;
#ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler
Profiler* mProfiler;
#endif
public:
// Constructor
ConcaveMeshRaycastCallback(const DynamicAABBTree& dynamicAABBTree, const ConcaveMeshShape& concaveMeshShape,
ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray, MemoryAllocator& allocator)
: mHitAABBNodes(allocator), mDynamicAABBTree(dynamicAABBTree), mConcaveMeshShape(concaveMeshShape), mProxyShape(proxyShape),
mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false), mAllocator(allocator) {
}
/// Collect all the AABB nodes that are hit by the ray in the Dynamic AABB Tree
virtual decimal raycastBroadPhaseShape(int32 nodeId, const Ray& ray) override;
/// Raycast all collision shapes that have been collected
void raycastTriangles();
/// Return true if a raycast hit has been found
bool getIsHit() const {
return mIsHit;
}
#ifdef IS_PROFILING_ACTIVE
/// Set the profiler
void setProfiler(Profiler* profiler) {
mProfiler = profiler;
}
#endif
};
// Class ConcaveMeshShape
/**
* This class represents a static concave mesh shape. Note that collision detection
* with a concave mesh shape can be very expensive. You should only use
* this shape for a static mesh.
*/
class ConcaveMeshShape : public ConcaveShape {
protected:
// -------------------- Attributes -------------------- //
/// Triangle mesh
TriangleMesh* mTriangleMesh;
/// Dynamic AABB tree to accelerate collision with the triangles
DynamicAABBTree mDynamicAABBTree;
/// Array with computed vertices normals for each TriangleVertexArray of the triangle mesh (only
/// if the user did not provide its own vertices normals)
Vector3** mComputedVerticesNormals;
/// Scaling
const Vector3 mScaling;
// -------------------- Methods -------------------- //
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const override;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override;
/// Insert all the triangles into the dynamic AABB tree
void initBVHTree();
/// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle
void getTriangleVertices(uint subPart, uint triangleIndex, Vector3* outTriangleVertices) const;
/// Return the three vertex normals (in the array outVerticesNormals) of a triangle
void getTriangleVerticesNormals(uint subPart, uint triangleIndex, Vector3* outVerticesNormals) const;
/// Return the indices of the three vertices of a given triangle in the array
void getTriangleVerticesIndices(uint subPart, uint triangleIndex, uint* outVerticesIndices) const;
/// Compute the shape Id for a given triangle of the mesh
uint computeTriangleShapeId(uint subPart, uint triangleIndex) const;
public:
/// Constructor
ConcaveMeshShape(TriangleMesh* triangleMesh, const Vector3& scaling = Vector3(1, 1, 1));
/// Destructor
virtual ~ConcaveMeshShape() = default;
/// Deleted copy-constructor
ConcaveMeshShape(const ConcaveMeshShape& shape) = delete;
/// Deleted assignment operator
ConcaveMeshShape& operator=(const ConcaveMeshShape& shape) = delete;
/// Return the scaling vector
const Vector3& getScaling() const;
/// Return the number of sub parts contained in this mesh
uint getNbSubparts() const;
/// Return the number of triangles in a sub part
uint getNbTriangles(uint subPart) const;
/// Return the triangle positions for a specific subpart and triangle index
void getTriangleVertices(uint subPart, uint triangleIndex, Vector3* v1, Vector3* v2, Vector3* v3) const;
/// Return the triangle normals for a specific subpart and triangle index
void getTriangleVerticesNormals(uint subPart, uint triangleIndex, Vector3* n1, Vector3* n2, Vector3* n3) const;
/// Return the local bounds of the shape in x, y and z directions.
virtual void getLocalBounds(Vector3& min, Vector3& max) const override;
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const override;
/// Use a callback method on all triangles of the concave shape inside a given AABB
virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const override;
/// Return the string representation of the shape
virtual std::string to_string() const override;
#ifdef IS_PROFILING_ACTIVE
/// Set the profiler
virtual void setProfiler(Profiler* profiler) override;
#endif
// ---------- Friendship ----------- //
friend class ConvexTriangleAABBOverlapCallback;
friend class ConcaveMeshRaycastCallback;
};
// Return the number of bytes used by the collision shape
inline size_t ConcaveMeshShape::getSizeInBytes() const {
return sizeof(ConcaveMeshShape);
}
// Return the scaling vector
inline const Vector3& ConcaveMeshShape::getScaling() const {
return mScaling;
}
// Return the local bounds of the shape in x, y and z directions.
// This method is used to compute the AABB of the box
/**
* @param min The minimum bounds of the shape in local-space coordinates
* @param max The maximum bounds of the shape in local-space coordinates
*/
inline void ConcaveMeshShape::getLocalBounds(Vector3& min, Vector3& max) const {
// Get the AABB of the whole tree
AABB treeAABB = mDynamicAABBTree.getRootAABB();
min = treeAABB.getMin();
max = treeAABB.getMax();
}
// Return the local inertia tensor of the shape
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline void ConcaveMeshShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
// Default inertia tensor
// Note that this is not very realistic for a concave triangle mesh.
// However, in most cases, it will only be used static bodies and therefore,
// the inertia tensor is not used.
tensor.setAllValues(mass, 0, 0,
0, mass, 0,
0, 0, mass);
}
// Called when a overlapping node has been found during the call to
// DynamicAABBTree:reportAllShapesOverlappingWithAABB()
inline void ConvexTriangleAABBOverlapCallback::notifyOverlappingNode(int nodeId) {
// Get the node data (triangle index and mesh subpart index)
int32* data = mDynamicAABBTree.getNodeDataInt(nodeId);
// Get the triangle vertices for this node from the concave mesh shape
Vector3 trianglePoints[3];
mConcaveMeshShape.getTriangleVertices(data[0], data[1], trianglePoints);
// Get the vertices normals of the triangle
Vector3 verticesNormals[3];
mConcaveMeshShape.getTriangleVerticesNormals(data[0], data[1], verticesNormals);
// Call the callback to test narrow-phase collision with this triangle
mTriangleTestCallback.testTriangle(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1]));
}
#ifdef IS_PROFILING_ACTIVE
// Set the profiler
inline void ConcaveMeshShape::setProfiler(Profiler* profiler) {
CollisionShape::setProfiler(profiler);
mDynamicAABBTree.setProfiler(profiler);
}
#endif
}
#endif