reactphysics3d/src/collision/shapes/SphereShape.cpp
2020-01-20 21:22:46 +01:00

107 lines
4.6 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2019 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "SphereShape.h"
#include "collision/Collider.h"
#include "configuration.h"
#include "collision/RaycastInfo.h"
#include <cassert>
using namespace reactphysics3d;
// Constructor
/**
* @param radius Radius of the sphere (in meters)
*/
SphereShape::SphereShape(decimal radius)
: ConvexShape(CollisionShapeName::SPHERE, CollisionShapeType::SPHERE, radius) {
assert(radius > decimal(0.0));
}
// Update the AABB of a body using its collision shape
/**
* @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape
* computed in world-space coordinates
* @param transform Transform used to compute the AABB of the collision shape
*/
void SphereShape::computeAABB(AABB& aabb, const Transform& transform) const {
RP3D_PROFILE("SphereShape::computeAABB()", mProfiler);
// Get the local extents in x,y and z direction
Vector3 extents(mMargin, mMargin, mMargin);
// Update the AABB with the new minimum and maximum coordinates
aabb.setMin(transform.getPosition() - extents);
aabb.setMax(transform.getPosition() + extents);
}
// Raycast method with feedback information
bool SphereShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, Collider* collider, MemoryAllocator& allocator) const {
const Vector3 m = ray.point1;
decimal c = m.dot(m) - mMargin * mMargin;
// If the origin of the ray is inside the sphere, we return no intersection
if (c < decimal(0.0)) return false;
const Vector3 rayDirection = ray.point2 - ray.point1;
decimal b = m.dot(rayDirection);
// If the origin of the ray is outside the sphere and the ray
// is pointing away from the sphere, there is no intersection
if (b > decimal(0.0)) return false;
decimal raySquareLength = rayDirection.lengthSquare();
// Compute the discriminant of the quadratic equation
decimal discriminant = b * b - raySquareLength * c;
// If the discriminant is negative or the ray length is very small, there is no intersection
if (discriminant < decimal(0.0) || raySquareLength < MACHINE_EPSILON) return false;
// Compute the solution "t" closest to the origin
decimal t = -b - std::sqrt(discriminant);
assert(t >= decimal(0.0));
// If the hit point is withing the segment ray fraction
if (t < ray.maxFraction * raySquareLength) {
// Compute the intersection information
t /= raySquareLength;
raycastInfo.body = collider->getBody();
raycastInfo.collider = collider;
raycastInfo.hitFraction = t;
raycastInfo.worldPoint = ray.point1 + t * rayDirection;
raycastInfo.worldNormal = raycastInfo.worldPoint;
return true;
}
return false;
}