reactphysics3d/src/collision/narrowphase/GJK/VoronoiSimplex.cpp
2016-09-21 22:03:45 +02:00

632 lines
25 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "VoronoiSimplex.h"
#include <cfloat>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
decimal VoronoiSimplex::epsilon = decimal(0.0001);
// Constructor
VoronoiSimplex::VoronoiSimplex() : mNbPoints(0), mRecomputeClosestPoint(false), mIsClosestPointValid(false) {
}
// Destructor
VoronoiSimplex::~VoronoiSimplex() {
}
// Add a new support point of (A-B) into the simplex
/// suppPointA : support point of object A in a direction -v
/// suppPointB : support point of object B in a direction v
/// point : support point of object (A-B) => point = suppPointA - suppPointB
void VoronoiSimplex::addPoint(const Vector3& point, const Vector3& suppPointA, const Vector3& suppPointB) {
assert(!isFull());
mPoints[mNbPoints] = point;
mSuppPointsA[mNbPoints] = suppPointA;
mSuppPointsB[mNbPoints] = suppPointB;
mNbPoints++;
mRecomputeClosestPoint = true;
}
// Remove a point from the simplex
void VoronoiSimplex::removePoint(int index) {
assert(mNbPoints > 0);
mNbPoints--;
mPoints[index] = mPoints[mNbPoints];
mSuppPointsA[index] = mSuppPointsA[mNbPoints];
mSuppPointsB[index] = mSuppPointsB[mNbPoints];
}
// Reduce the simplex (only keep vertices that participate to the point closest to the origin)
/// bitsUsedPoints is seen as a sequence of bits representing whether the four points of
/// the simplex are used or not to represent the current closest point to the origin.
/// - The most right bit is set to one if the first point is used
/// - The second most right bit is set to one if the second point is used
/// - The third most right bit is set to one if the third point is used
/// - The fourth most right bit is set to one if the fourth point is used
void VoronoiSimplex::reduceSimplex(int bitsUsedPoints) {
if ((mNbPoints >= 4) && (bitsUsedPoints & 8) == 0)
removePoint(3);
if ((mNbPoints >= 3) && (bitsUsedPoints & 4) == 0)
removePoint(2);
if ((mNbPoints >= 2) && (bitsUsedPoints & 2) == 0)
removePoint(1);
if ((mNbPoints >= 1) && (bitsUsedPoints & 1) == 0)
removePoint(0);
}
// Return true if the point is in the simplex
bool VoronoiSimplex::isPointInSimplex(const Vector3& point) const {
// For each four possible points in the simplex
for (int i=0; i<mNbPoints; i++) {
// Compute the distance between the points
decimal distanceSquare = (mPoints[i] - point).lengthSquare();
// If the point is very close
if (distanceSquare <= epsilon) {
return true;
}
}
return false;
}
// Return the points of the simplex
int VoronoiSimplex::getSimplex(Vector3* suppPointsA, Vector3* suppPointsB,
Vector3* points) const {
for (int i=0; i<mNbPoints; i++) {
points[i] = mPoints[i];
suppPointsA[i] = mSuppPointsA[i];
suppPointsB[i] = mSuppPointsB[i];
}
// Return the number of points in the simplex
return mNbPoints;
}
// Return true if the set is affinely dependent.
/// A set if affinely dependent if a point of the set
/// is an affine combination of other points in the set
bool VoronoiSimplex::isAffinelyDependent() const {
assert(mNbPoints >= 0 && mNbPoints <= 4);
switch(mNbPoints) {
case 0: return false;
case 1: return false;
// Two points are independent if there distance is larger than zero
case 2: return (mPoints[1] - mPoints[0]).lengthSquare() <= epsilon;
// Three points are independent if the triangle area is larger than zero
case 3: return (mPoints[1] - mPoints[0]).cross(mPoints[2] - mPoints[0]).lengthSquare() <= epsilon;
// Four points are independent if the tetrahedron volume is larger than zero
// Test in three different ways (for more robustness)
case 4: return std::abs((mPoints[1] - mPoints[0]).dot((mPoints[2] - mPoints[0]).cross(mPoints[3] - mPoints[0]))) <= epsilon;
}
return false;
}
// Compute the closest points "pA" and "pB" of object A and B.
/// The points are computed as follows :
/// pA = sum(lambda_i * a_i) where "a_i" are the support points of object A
/// pB = sum(lambda_i * b_i) where "b_i" are the support points of object B
/// with lambda_i = deltaX_i / deltaX
void VoronoiSimplex::computeClosestPointsOfAandB(Vector3& pA, Vector3& pB) const {
pA = mClosestSuppPointA;
pB = mClosestSuppPointB;
}
// Recompute the closest point if the simplex has been modified
/// This method computes the point "v" of simplex that is closest to the origin.
/// The method returns true if a closest point has been found.
bool VoronoiSimplex::recomputeClosestPoint() {
assert(mNbPoints <= 4);
// If we need to recompute the closest point
if (mRecomputeClosestPoint) {
mRecomputeClosestPoint = false;
switch(mNbPoints) {
case 0:
// Cannot compute closest point when the simplex is empty
mIsClosestPointValid = false;
break;
case 1:
{
// There is a single point in the simplex, therefore, this point is
// the one closest to the origin
mClosestPoint = mPoints[0];
mClosestSuppPointA = mSuppPointsA[0];
mClosestSuppPointB = mSuppPointsB[0];
setBarycentricCoords(1, 0, 0, 0);
mIsClosestPointValid = checkClosestPointValid();
}
break;
case 2:
{
int bitsUsedPoints = 0;
float t;
// The simplex is a line AB (where A=mPoints[0] and B=mPoints[1].
// We need to find the point of that line closest to the origin
computeClosestPointOnSegment(mPoints[0], mPoints[1], bitsUsedPoints, t);
// Compute the closest point
mClosestSuppPointA = mSuppPointsA[0] + t * (mSuppPointsA[1] - mSuppPointsA[0]);
mClosestSuppPointB = mSuppPointsB[0] + t * (mSuppPointsB[1] - mSuppPointsB[0]);
mClosestPoint = mClosestSuppPointA - mClosestSuppPointB;
setBarycentricCoords(decimal(1.0) - t, t, 0, 0);
mIsClosestPointValid = checkClosestPointValid();
// Reduce the simplex (remove vertices that are not participating to
// the closest point
reduceSimplex(bitsUsedPoints);
}
break;
case 3:
{
// The simplex is a triangle. We need to find the point of that
// triangle that is closest to the origin
int bitsUsedVertices = 0;
Vector3 baryCoords;
// Compute the point of the triangle closest to the origin
computeClosestPointOnTriangle(mPoints[0], mPoints[1], mPoints[2], bitsUsedVertices, baryCoords);
mClosestSuppPointA = baryCoords[0] * mSuppPointsA[0] + baryCoords[1] * mSuppPointsA[1] +
baryCoords[2] * mSuppPointsA[2];
mClosestSuppPointB = baryCoords[0] * mSuppPointsB[0] + baryCoords[1] * mSuppPointsB[1] +
baryCoords[2] * mSuppPointsB[2];
mClosestPoint = mClosestSuppPointA - mClosestSuppPointB;
setBarycentricCoords(baryCoords.x, baryCoords.y, baryCoords.z, 0.0);
mIsClosestPointValid = checkClosestPointValid();
// Reduce the simplex (remove vertices that are not participating to
// the closest point
reduceSimplex(bitsUsedVertices);
}
break;
case 4:
{
// The simplex is a tetrahedron. We need to find the point of that
// tetrahedron that is closest to the origin
int bitsUsedVertices = 0;
Vector2 baryCoordsAB;
Vector2 baryCoordsCD;
bool isDegenerate;
// Compute the point closest to the origin on the tetrahedron
bool isOutside = computeClosestPointOnTetrahedron(mPoints[0], mPoints[1], mPoints[2], mPoints[3],
bitsUsedVertices, baryCoordsAB, baryCoordsCD, isDegenerate);
// If the origin is outside the tetrahedron
if (isOutside) {
// Compute the point of the tetrahedron closest to the origin
mClosestSuppPointA = baryCoordsAB.x * mSuppPointsA[0] + baryCoordsAB.y * mSuppPointsA[1] +
baryCoordsCD.x * mSuppPointsA[2] + baryCoordsCD.y * mSuppPointsA[3];
mClosestSuppPointB = baryCoordsAB.x * mSuppPointsB[0] + baryCoordsAB.y * mSuppPointsB[1] +
baryCoordsCD.x * mSuppPointsB[2] + baryCoordsCD.y * mSuppPointsB[3];
mClosestPoint = mClosestSuppPointA - mClosestSuppPointB;
setBarycentricCoords(baryCoordsAB.x, baryCoordsAB.y, baryCoordsCD.x, baryCoordsCD.y);
// Reduce the simplex (remove vertices that are not participating to
// the closest point
reduceSimplex(bitsUsedVertices);
}
else {
// If it is a degenerate case
if (isDegenerate) {
mIsClosestPointValid = false;
}
else {
// The origin is inside the tetrahedron, therefore, the closest point
// is the origin
setBarycentricCoords(0.0, 0.0, 0.0, 0.0);
mClosestSuppPointA.setToZero();
mClosestSuppPointB.setToZero();
mClosestPoint.setToZero();
mIsClosestPointValid = true;
}
break;
}
mIsClosestPointValid = checkClosestPointValid();
}
break;
}
}
return mIsClosestPointValid;
}
// Compute point of a line segment that is closest to the origin
void VoronoiSimplex::computeClosestPointOnSegment(const Vector3& a, const Vector3& b, int& bitUsedVertices,
float& t) const {
Vector3 AP = -a;
Vector3 AB = b - a;
decimal APDotAB = AP.dot(AB);
// If the closest point is on the side of A in the direction of B
if (APDotAB > decimal(0.0)) {
decimal lengthABSquare = AB.lengthSquare();
// If the closest point is on the segment AB
if (APDotAB < lengthABSquare) {
t = APDotAB / lengthABSquare;
bitUsedVertices = 3; // 0011 (both A and B are used)
}
else { // If the origin is on the side of B that is not in the direction of A
// Therefore, the closest point is B
t = decimal(1.0);
bitUsedVertices = 2; // 0010 (only B is used)
}
}
else { // If the origin is on the side of A that is not in the direction of B
// Therefore, the closest point of the line is A
t = decimal(0.0);
bitUsedVertices = 1; // 0001 (only A is used)
}
}
// Compute point on a triangle that is closest to the origin
/// This implementation is based on the one in the book
/// "Real-Time Collision Detection" by Christer Ericson.
void VoronoiSimplex::computeClosestPointOnTriangle(const Vector3& a, const Vector3& b, const Vector3& c,
int& bitsUsedVertices, Vector3& baryCoordsABC) const {
// Check if the origin is in the Voronoi region of vertex A
Vector3 ab = b - a;
Vector3 ac = c - a;
Vector3 ap = -a;
decimal d1 = ab.dot(ap);
decimal d2 = ac.dot(ap);
if (d1 <= decimal(0.0) && d2 <= decimal(0.0)) {
// The origin is in the Voronoi region of vertex A
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(1.0, 0, 0);
bitsUsedVertices = 1; // 0001 (only A is used)
return;
}
// Check if the origin is in the Voronoi region of vertex B
Vector3 bp = -b;
decimal d3 = ab.dot(bp);
decimal d4 = ac.dot(bp);
if (d3 >= decimal(0.0) && d4 <= d3) {
// The origin is in the Voronoi region of vertex B
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(0.0, 1.0, 0);
bitsUsedVertices = 2; // 0010 (only B is used)
return;
}
// Check if the origin is in the Voronoi region of edge AB
decimal vc = d1 * d4 - d3 * d2;
if (vc <= decimal(0.0) && d1 >= decimal(0.0) && d3 <= decimal(0.0)) {
// The origin is in the Voronoi region of edge AB
// We return the projection of the origin on the edge AB
assert(std::abs(d1 - d3) > MACHINE_EPSILON);
decimal v = d1 / (d1 - d3);
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(decimal(1.0) - v, v, 0);
bitsUsedVertices = 3; // 0011 (A and B are used)
return;
}
// Check if the origin is in the Voronoi region of vertex C
Vector3 cp = -c;
decimal d5 = ab.dot(cp);
decimal d6 = ac.dot(cp);
if (d6 >= decimal(0.0) && d5 <= d6) {
// The origin is in the Voronoi region of vertex C
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(0.0, 0.0, 1.0);
bitsUsedVertices = 4; // 0100 (only C is used)
return;
}
// Check if the origin is in the Voronoi region of edge AC
decimal vb = d5 * d2 - d1 * d6;
if (vb <= decimal(0.0) && d2 >= decimal(0.0) && d6 <= decimal(0.0)) {
// The origin is in the Voronoi region of edge AC
// We return the projection of the origin on the edge AC
assert(std::abs(d2 - d6) > MACHINE_EPSILON);
decimal w = d2 / (d2 - d6);
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(decimal(1.0) - w, 0, w);
bitsUsedVertices = 5; // 0101 (A and C are used)
return;
}
// Check if the origin is in the Voronoi region of edge BC
decimal va = d3 * d6 - d5 * d4;
if (va <= decimal(0.0) && (d4 - d3) >= decimal(0.0) && (d5 - d6) >= decimal(0.0)) {
// The origin is in the Voronoi region of edge BC
// We return the projection of the origin on the edge BC
assert(std::abs((d4 - d3) + (d5 - d6)) > MACHINE_EPSILON);
decimal w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(0.0, decimal(1.0) - w, w);
bitsUsedVertices = 6; // 0110 (B and C are used)
return;
}
// The origin is in the Voronoi region of the face ABC
decimal denom = decimal(1.0) / (va + vb + vc);
decimal v = vb * denom;
decimal w = vc * denom;
// Set the barycentric coords of the closest point on the triangle
baryCoordsABC.setAllValues(1 - v - w, v, w);
bitsUsedVertices = 7; // 0111 (A, B and C are used)
return;
}
// Compute point of a tetrahedron that is closest to the origin
/// This implementation is based on the one in the book
/// "Real-Time Collision Detection" by Christer Ericson.
/// This method returns true if the origin is outside the tetrahedron.
bool VoronoiSimplex::computeClosestPointOnTetrahedron(const Vector3& a, const Vector3& b, const Vector3& c,
const Vector3& d, int& bitsUsedPoints, Vector2& baryCoordsAB,
Vector2& baryCoordsCD, bool& isDegenerate) const {
isDegenerate = false;
// Start as if the origin was inside the tetrahedron
bitsUsedPoints = 15; // 1111 (A, B, C and D are used)
baryCoordsAB.setToZero();
baryCoordsCD.setToZero();
// Check if the origin is outside each tetrahedron face
int isOriginOutsideFaceABC = testOriginOutsideOfPlane(a, b, c, d);
int isOriginOutsideFaceACD = testOriginOutsideOfPlane(a, c, d, b);
int isOriginOutsideFaceADB = testOriginOutsideOfPlane(a, d, b, c);
int isOriginOutsideFaceBDC = testOriginOutsideOfPlane(b, d, c, a);
// If we have a degenerate tetrahedron
if (isOriginOutsideFaceABC < 0 || isOriginOutsideFaceACD < 0 ||
isOriginOutsideFaceADB < 0 || isOriginOutsideFaceBDC < 0) {
// The tetrahedron is degenerate
isDegenerate = true;
return false;
}
if (isOriginOutsideFaceABC == 0 && isOriginOutsideFaceACD == 0 &&
isOriginOutsideFaceADB == 0 && isOriginOutsideFaceBDC == 0) {
// The origin is inside the tetrahedron
return true;
}
// We know that the origin is outside the tetrahedron, we now need to find
// which of the four triangle faces is closest to it.
decimal closestSquareDistance = DECIMAL_LARGEST;
int tempUsedVertices;
Vector3 triangleBaryCoords;
// If the origin is outside face ABC
if (isOriginOutsideFaceABC) {
// Compute the closest point on this triangle face
computeClosestPointOnTriangle(a, b, c, tempUsedVertices, triangleBaryCoords);
Vector3 closestPoint = triangleBaryCoords[0] * a + triangleBaryCoords[1] * b +
triangleBaryCoords[2] * c;
decimal squareDist = closestPoint.lengthSquare();
// If the point on that face is the closest to the origin so far
if (squareDist < closestSquareDistance) {
// Use it as the current closest point
closestSquareDistance = squareDist;
baryCoordsAB.setAllValues(triangleBaryCoords[0], triangleBaryCoords[1]);
baryCoordsCD.setAllValues(triangleBaryCoords[2], 0.0);
bitsUsedPoints = tempUsedVertices;
}
}
// If the origin is outside face ACD
if (isOriginOutsideFaceACD) {
// Compute the closest point on this triangle face
computeClosestPointOnTriangle(a, c, d, tempUsedVertices, triangleBaryCoords);
Vector3 closestPoint = triangleBaryCoords[0] * a + triangleBaryCoords[1] * c +
triangleBaryCoords[2] * d;
decimal squareDist = closestPoint.lengthSquare();
// If the point on that face is the closest to the origin so far
if (squareDist < closestSquareDistance) {
// Use it as the current closest point
closestSquareDistance = squareDist;
baryCoordsAB.setAllValues(triangleBaryCoords[0], 0.0);
baryCoordsCD.setAllValues(triangleBaryCoords[1], triangleBaryCoords[2]);
bitsUsedPoints = mapTriangleUsedVerticesToTetrahedron(tempUsedVertices, 0, 2, 3);
}
}
// If the origin is outside face
if (isOriginOutsideFaceADB) {
// Compute the closest point on this triangle face
computeClosestPointOnTriangle(a, d, b, tempUsedVertices, triangleBaryCoords);
Vector3 closestPoint = triangleBaryCoords[0] * a + triangleBaryCoords[1] * d +
triangleBaryCoords[2] * b;
decimal squareDist = closestPoint.lengthSquare();
// If the point on that face is the closest to the origin so far
if (squareDist < closestSquareDistance) {
// Use it as the current closest point
closestSquareDistance = squareDist;
baryCoordsAB.setAllValues(triangleBaryCoords[0], triangleBaryCoords[2]);
baryCoordsCD.setAllValues(0.0, triangleBaryCoords[1]);
bitsUsedPoints = mapTriangleUsedVerticesToTetrahedron(tempUsedVertices, 0, 3, 1);
}
}
// If the origin is outside face
if (isOriginOutsideFaceBDC) {
// Compute the closest point on this triangle face
computeClosestPointOnTriangle(b, d, c, tempUsedVertices, triangleBaryCoords);
Vector3 closestPoint = triangleBaryCoords[0] * b + triangleBaryCoords[1] * d +
triangleBaryCoords[2] * c;
decimal squareDist = closestPoint.lengthSquare();
// If the point on that face is the closest to the origin so far
if (squareDist < closestSquareDistance) {
// Use it as the current closest point
baryCoordsAB.setAllValues(0.0, triangleBaryCoords[0]);
baryCoordsCD.setAllValues(triangleBaryCoords[2], triangleBaryCoords[1]);
bitsUsedPoints = mapTriangleUsedVerticesToTetrahedron(tempUsedVertices, 1, 3, 2);
}
}
return true;
}
// 0111 (1,2,3) => 0111
// 0011 (2,1,3) =>
int VoronoiSimplex::mapTriangleUsedVerticesToTetrahedron(int triangleUsedVertices, int first, int second, int third) const {
assert(triangleUsedVertices <= 7);
int tetrahedronUsedVertices = (((1 & triangleUsedVertices) != 0) << first) |
(((2 & triangleUsedVertices) != 0) << second) |
(((4 & triangleUsedVertices) != 0) << third);
assert(tetrahedronUsedVertices <= 14);
return tetrahedronUsedVertices;
}
// Test if a point is outside of the plane given by the points of the triangle (a, b, c)
/// This method returns 1 if the point d and the origin are on opposite sides of
/// the triangle face (a, b, c). It returns 0 if they are on the same side.
/// This implementation is based on the one in the book
/// "Real-Time Collision Detection" by Christer Ericson.
int VoronoiSimplex::testOriginOutsideOfPlane(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d) const {
// Normal of (a,b,c) triangle
const Vector3 n = (b-a).cross(c-a);
decimal signp = (-a).dot(n);
decimal signd = (d-a).dot(n);
// If the tetrahedron is degenerate (all points on the same plane)
// This should never happen because after a point is added into the simplex, the user
// of this class must check that the simplex is not affinely dependent using the
// isAffinelyDependent() method
if(signd * signd < epsilon * epsilon) {
return -1;
}
return signp * signd < decimal(0.0);
}
// Backup the closest point
void VoronoiSimplex::backupClosestPointInSimplex(Vector3& v) {
v = mClosestPoint;
}
// Return the maximum squared length of a point
decimal VoronoiSimplex::getMaxLengthSquareOfAPoint() const {
decimal maxLengthSquare = decimal(0.0);
for (int i=0; i<mNbPoints; i++) {
decimal lengthSquare = mPoints[i].lengthSquare();
if (lengthSquare > maxLengthSquare) {
maxLengthSquare = lengthSquare;
}
}
// Return the maximum squared length
return maxLengthSquare;
}