vall-e/vall_e/engines/__init__.py

261 lines
8.7 KiB
Python
Raw Normal View History

2023-08-04 01:26:36 +00:00
from ..config import cfg
from ..utils.distributed import fix_unset_envs, ddp_model
2023-08-05 03:22:15 +00:00
fix_unset_envs()
2023-08-04 01:26:36 +00:00
if cfg.trainer.backend == "deepspeed":
from .deepspeed import Engine
elif cfg.trainer.backend == "local":
from .base import Engine
from .base import Engines, TrainFeeder, default_feeder, Engine as LocalEngine
from ..models import get_models, get_model
from ..utils import wrapper as ml
from ..utils.io import torch_save, torch_load, pick_path
from ..models.lora import apply_lora, lora_load_state_dict
import torch
import re
import logging
_logger = logging.getLogger(__name__)
deepspeed_available = False
try:
import deepspeed
deepspeed_available = True
except Exception as e:
pass
from functools import cache
@cache
def load_engines(training=True, **model_kwargs):
models = get_models(cfg.models, training=training, **model_kwargs)
engines = dict()
for name, model in models.items():
state = None
stats = None
lora = None
inferencing = cfg.mode == "inferencing" or not model.config.training or not training
backend = cfg.inference.backend if inferencing else cfg.trainer.backend
loads_state_dict = cfg.trainer.load_state_dict # or inferencing
checkpoint_path = cfg.ckpt_dir / name / "latest"
# automatically load from state dict if one is provided, but no DeepSpeed checkpoint is present
load_path = pick_path( cfg.ckpt_dir / name / f"fp32.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
# actually use the lora-specific checkpoint if available
if cfg.lora is not None:
checkpoint_path = cfg.ckpt_dir / cfg.lora.full_name / "latest"
# to handle the issue of training with deepspeed, but inferencing with local
if checkpoint_path.exists() and backend == "local":
tag = open(checkpoint_path).read()
checkpoint_path = pick_path( checkpoint_path.parent / tag / f"state.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
# if loaded using --model=
if model.config.path and model.config.path.exists():
load_path = model.config.path
if not loads_state_dict and not checkpoint_path.exists() and load_path.exists():
2024-08-30 15:46:26 +00:00
_logger.warning(f"Checkpoint missing, but weights found: {load_path}")
loads_state_dict = True
# load state early
if loads_state_dict:
state = torch_load(load_path, device=cfg.device)
# check if config is defined in state, and re-initialize the model
if "config" in state and False:
_logger.warning("Model config definition in weights, re-loading...")
config_state = state["config"]
model = get_model( config=cfg.model.__class__( *config_state ), training=training )
hyper_config = model.config
optimizer = None
lr_scheduler = None
dtype = cfg.inference.dtype if inferencing else cfg.trainer.dtype
amp = cfg.inference.amp if inferencing else cfg.trainer.amp
ddp = cfg.trainer.ddp
engine_class = LocalEngine if backend == "local" else Engine
# apply model replacers
if cfg.optimizations.replace and cfg.optimizations.linear:
model.model = ml.replace_linear( model.model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model.model = ml.replace_embedding( model.model )
for lora in cfg.loras:
model.model = apply_lora( model.model, rank = lora.rank, alpha = lora.alpha, policy = model.config.lora_policy, use_parametrize = lora.parametrize )
if inferencing:
model.config.training = False
if not inferencing and (backend == "local" or (backend == "deepspeed" and cfg.hyperparameters.torch_optimizer)):
optimizer_class = None
scheduler_class = None
params = {
"lr": cfg.hyperparameters.learning_rate,
}
if cfg.hyperparameters.optimizer.lower() == "adamw":
params["betas"] = (0.9, 0.96)
params["eps"] = 1e-07
params["weight_decay"] = 0.01
# for dadaptation since it has Adam only
if ml.AdamW == ml.Adam:
params["decouple"] = True
optimizer_class = ml.AdamW
elif cfg.hyperparameters.optimizer.lower() == "sgd":
optimizer = ml.SGD
elif cfg.hyperparameters.optimizer.lower() == "prodigy":
optimizer_class = ml.Prodigy
params['d_coef'] = params['lr']
params['lr'] = 1.0
elif cfg.hyperparameters.optimizer.lower() == "adagrad":
optimizer_class = ml.Adagrad
else:
raise ValueError(f'Optimizer specified not implemented: {cfg.hyperparameters.optimizer}')
params.update(cfg.hyperparameters.optimizer_params)
optimizer = optimizer_class(
[ param for name, param in model.named_parameters() if name not in model.config.frozen_params ],
**params,
)
if cfg.hyperparameters.scheduler.lower() == "schedulefree":
if cfg.hyperparameters.optimizer.lower() == "adamw":
scheduler_class = ml.schedulefree.AdamWScheduleFree
elif cfg.hyperparameters.optimizer.lower() == "sgd":
scheduler_class = ml.schedulefree.SGDScheduleFree
else:
raise ValueError(f'ScheduleFree not implemented with requested optimizer: {cfg.hyperparameters.optimizer}')
optimizer = scheduler_class(
[ param for name, param in model.named_parameters() if name not in model.config.frozen_params ],
2024-05-10 03:18:49 +00:00
lr = params['lr'],
warmup_steps = cfg.hyperparameters.warmup_steps
)
"""
# set up our LR scheduler here
"""
if inferencing:
optimizer = None
lr_scheduler = None
# load state dict if requested / required
if loads_state_dict:
# state dict is not just the module, extract the extra trainer details
if "stats" in state:
stats = state["stats"]
# do not load stats if we're training a LoRA
if cfg.lora is not None or cfg.trainer.restart_step_count:
stats = None
if "module" in state:
state = state["module"]
# maintain compat if I change variable names
insert = {}
erase = []
for k in state.keys():
key = re.sub(r'^retnet\.', "model.", k)
if k != key:
insert[key] = state[k]
erase.append(k)
for k in insert.keys():
state[k] = insert[k]
for k in erase:
del state[k]
# resize modules if I'm doing experiments and can't be assed to manually trim things
if cfg.trainer.resize_modules:
2024-11-11 02:37:50 +00:00
uses_stop_token = 1 if ("ar" in model.capabilities or "len" in model.capabilities) > 0 else 0
keys = [
("text_emb.weight", model.config.text_tokens ),
2024-09-06 02:42:59 +00:00
("tasks_emb.weight", model.config.tasks ),
2024-09-19 02:40:57 +00:00
("langs_emb.weight", model.config.langs ),
2024-11-10 18:19:48 +00:00
("rvq_l_emb.weight", model.config.resp_levels ),
("resps_emb.embeddings.0.weight", model.config.audio_tokens + uses_stop_token ),
("model.embed_tokens.weight", model.config.audio_tokens + uses_stop_token ),
2024-08-03 01:28:49 +00:00
("classifiers.proj.0.weight" if model.config.experimental.split_classifiers else 'classifier.weight', model.config.audio_tokens + uses_stop_token ),
("classifiers.proj.0.bias" if model.config.experimental.split_classifiers else 'classifier.bias', model.config.audio_tokens + uses_stop_token ),
]
for k, tokens in keys:
2024-08-04 05:14:49 +00:00
if k not in state:
continue
state[k] = ml.resize_weight( state[k], tokens )
2024-06-06 02:02:05 +00:00
model.load_state_dict(state, strict=cfg.trainer.strict_loading)
# load lora weights if exists
if cfg.lora is not None:
if cfg.lora.path:
lora_path = cfg.lora.path
else:
lora_path = pick_path( cfg.ckpt_dir / cfg.lora.full_name / f"lora.{cfg.weights_format}", *[ f'.{format}' for format in cfg.supported_weights_formats] )
if lora_path.exists():
2024-08-30 15:46:26 +00:00
_logger.info( f"Loaded LoRA state dict: {lora_path}" )
state = torch_load(lora_path, device=cfg.device)
state = state['lora' if 'lora' in state else 'module']
lora_load_state_dict( model, state )
# wrap if DDP is requested
if ddp:
model = ddp_model(model)
# wrap optimization class
elif cfg.optimizations.compile:
model = ml.compile_model(model, backend=cfg.optimizations.compile)
# deepspeed inferencing
elif backend == "local" and inferencing and deepspeed_available and cfg.trainer.deepspeed.inferencing: #and sys.platform.startswith("win"):
engine_class = LocalEngine
model = deepspeed.init_inference(model=model, mp_size=1, replace_with_kernel_inject=True, dtype=dtype if not amp else torch.float32).module
# use base engine if requested
engines[name] = engine_class(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
2024-06-04 02:28:49 +00:00
hyper_config=hyper_config,
stats=stats
)
engines = Engines(engines)
engines.setup()
# this might bite me in the ass since technically this doesn't handle one engine loading fine but another engine not
if not cfg.trainer.load_state_dict:
engines.load_checkpoint(training=not inferencing)
# freeze requested params
for name, engine in engines.items():
engine.freeze(freeze_all=False)
# split models over requested devices
if cfg.optimizations.model_offloading:
engine.module = ml.offload_model( engine.module, policy=cfg.optimizations.model_offloading )
return engines