2023-08-02 21:53:35 +00:00
|
|
|
|
from ..config import cfg
|
|
|
|
|
from .base import Base, list_to_tensor, Categorical
|
|
|
|
|
|
|
|
|
|
import torch
|
2023-08-27 00:53:23 +00:00
|
|
|
|
from torch.nn.utils.rnn import pad_sequence
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
from torch import Tensor
|
|
|
|
|
from tqdm import trange
|
|
|
|
|
|
|
|
|
|
class AR(Base):
|
|
|
|
|
@property
|
|
|
|
|
def causal(self):
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def norm_type(self):
|
|
|
|
|
return "ln"
|
|
|
|
|
|
|
|
|
|
@property
|
2023-09-04 02:27:13 +00:00
|
|
|
|
def arch_type(self) -> str:
|
2023-09-04 03:46:08 +00:00
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.arch_type
|
2023-08-02 21:53:35 +00:00
|
|
|
|
return cfg.models.ar.arch_type
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_prom_levels(self) -> int:
|
|
|
|
|
return cfg.models.prom_levels
|
|
|
|
|
|
2023-08-19 20:06:33 +00:00
|
|
|
|
@property
|
|
|
|
|
def n_resp_levels(self) -> int:
|
2023-09-04 03:46:08 +00:00
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.resp_levels
|
2023-08-19 20:06:33 +00:00
|
|
|
|
return cfg.models.ar.resp_levels
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_max_levels(self) -> int:
|
|
|
|
|
return cfg.models.max_levels
|
|
|
|
|
|
2023-08-19 01:58:07 +00:00
|
|
|
|
@property
|
|
|
|
|
def n_tasks(self) -> int:
|
|
|
|
|
return cfg.models.tasks
|
|
|
|
|
|
2023-09-21 00:10:59 +00:00
|
|
|
|
@property
|
|
|
|
|
def n_langs(self) -> int:
|
|
|
|
|
return cfg.models.langs
|
|
|
|
|
|
2023-09-02 01:58:29 +00:00
|
|
|
|
@property
|
|
|
|
|
def recurrent_chunk_size(self) -> int:
|
|
|
|
|
if cfg.mode == "training":
|
|
|
|
|
return 0
|
|
|
|
|
return cfg.inference.recurrent_chunk_size
|
|
|
|
|
|
2023-09-21 00:10:59 +00:00
|
|
|
|
"""
|
|
|
|
|
@property
|
|
|
|
|
def rotary_embedding_base(self) -> float:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.rotary_embedding_base
|
|
|
|
|
return cfg.models.ar.rotary_embedding_base
|
|
|
|
|
"""
|
|
|
|
|
|
2023-09-04 03:46:08 +00:00
|
|
|
|
@property
|
|
|
|
|
def interleave(self) -> bool:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.interleave
|
|
|
|
|
return False
|
|
|
|
|
|
2023-09-07 00:33:39 +00:00
|
|
|
|
@property
|
2023-09-07 21:48:02 +00:00
|
|
|
|
def monolithic(self) -> bool:
|
2023-09-07 00:33:39 +00:00
|
|
|
|
return False
|
|
|
|
|
|
2023-09-11 19:13:42 +00:00
|
|
|
|
@property
|
|
|
|
|
def version(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.version
|
|
|
|
|
return cfg.models.ar.version
|
|
|
|
|
|
2023-08-02 21:53:35 +00:00
|
|
|
|
def _prune(self, l: Tensor):
|
|
|
|
|
indices = (l == self.stop_token).nonzero()
|
|
|
|
|
if len(indices) == 0:
|
|
|
|
|
return l
|
|
|
|
|
return l[: indices.min().item()]
|
|
|
|
|
|
2023-09-04 03:46:08 +00:00
|
|
|
|
def _interleave( self, codes ):
|
|
|
|
|
if not self.interleave:
|
|
|
|
|
return codes
|
|
|
|
|
|
|
|
|
|
return codes.flatten()
|
|
|
|
|
|
|
|
|
|
def _deinterleave( self, codes, length = 0 ):
|
|
|
|
|
if not self.interleave:
|
|
|
|
|
return codes
|
|
|
|
|
|
|
|
|
|
return torch.unflatten( codes[:codes.shape[0] // self.n_prom_levels * self.n_prom_levels], 0, ( codes.shape[0] // self.n_prom_levels, self.n_prom_levels ) )
|
|
|
|
|
|
2023-08-02 21:53:35 +00:00
|
|
|
|
@staticmethod
|
|
|
|
|
def _unsqueeze_list(x_list, axis=-1):
|
|
|
|
|
return [x.unsqueeze(dim=axis) for x in x_list]
|
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
|
self,
|
|
|
|
|
text_list: list[Tensor],
|
|
|
|
|
proms_list: list[Tensor],
|
2023-08-04 01:26:36 +00:00
|
|
|
|
resps_list: list[Tensor] | None = None,
|
2023-08-02 21:53:35 +00:00
|
|
|
|
max_steps: int = 1000,
|
2023-09-13 02:28:07 +00:00
|
|
|
|
|
2023-08-02 21:53:35 +00:00
|
|
|
|
sampling_temperature: float = 1.0,
|
2023-09-09 01:30:54 +00:00
|
|
|
|
sampling_top_k: int = -100,
|
|
|
|
|
sampling_top_p: float = 1.0,
|
|
|
|
|
sampling_repetition_penalty: float = 1.0,
|
2023-09-09 02:02:00 +00:00
|
|
|
|
sampling_repetition_penalty_decay: float = 0.0,
|
2023-09-09 01:30:54 +00:00
|
|
|
|
sampling_length_penalty: float = 0.0,
|
2023-09-13 02:28:07 +00:00
|
|
|
|
sampling_beam_width: int = 0,
|
2023-09-18 23:55:41 +00:00
|
|
|
|
|
|
|
|
|
sampling_mirostat_tau: float = 0.0,
|
|
|
|
|
sampling_mirostat_eta: float = 0.1,
|
2023-08-02 21:53:35 +00:00
|
|
|
|
):
|
2023-08-04 01:26:36 +00:00
|
|
|
|
if resps_list is not None:
|
2023-09-04 03:46:08 +00:00
|
|
|
|
if self.interleave:
|
|
|
|
|
resps_list = [self._interleave(r) for r in resps_list]
|
|
|
|
|
else:
|
|
|
|
|
resps_list = [r[..., 0] for r in resps_list] # guarantees we only have the first levels
|
2023-08-04 01:26:36 +00:00
|
|
|
|
|
2023-08-02 21:53:35 +00:00
|
|
|
|
return super().forward(
|
2023-08-04 01:26:36 +00:00
|
|
|
|
text_list=text_list,
|
|
|
|
|
proms_list=proms_list,
|
|
|
|
|
resps_list=self._unsqueeze_list(resps_list),
|
|
|
|
|
targ_list=resps_list,
|
2023-08-02 21:53:35 +00:00
|
|
|
|
quant_levels=None,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
device = text_list[0].device
|
2023-09-02 01:58:29 +00:00
|
|
|
|
batch_size = len(text_list)
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
2023-09-16 05:26:13 +00:00
|
|
|
|
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
|
2023-09-02 01:58:29 +00:00
|
|
|
|
stopped = torch.zeros(batch_size, device=device).bool()
|
2023-08-27 00:53:23 +00:00
|
|
|
|
|
2023-09-18 23:55:41 +00:00
|
|
|
|
recurrent_state = {} if cfg.inference.recurrent_forward else None
|
|
|
|
|
mirostat = [
|
|
|
|
|
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
|
|
|
|
|
] * batch_size if sampling_mirostat_tau > 0.0 else None
|
2023-09-16 05:26:13 +00:00
|
|
|
|
|
2023-09-13 18:19:11 +00:00
|
|
|
|
sampling_beam_width_use_logs = True
|
|
|
|
|
scores = [ 1.0 ] * sampling_beam_width
|
2023-08-27 00:53:23 +00:00
|
|
|
|
|
2023-09-04 03:46:08 +00:00
|
|
|
|
if self.interleave:
|
|
|
|
|
max_steps *= self.n_prom_levels
|
|
|
|
|
|
2023-09-13 18:19:11 +00:00
|
|
|
|
# get next in sequence
|
2023-09-02 01:58:29 +00:00
|
|
|
|
for n in trange(max_steps // max(1, self.recurrent_chunk_size)):
|
2023-09-16 05:26:13 +00:00
|
|
|
|
resps_list = self._unsqueeze_list(sequence_list)
|
2023-09-13 02:28:07 +00:00
|
|
|
|
logits = super().forward(
|
2023-09-06 23:58:35 +00:00
|
|
|
|
text_list=text_list,
|
|
|
|
|
proms_list=proms_list,
|
2023-09-16 05:26:13 +00:00
|
|
|
|
resps_list=resps_list,
|
|
|
|
|
|
2023-09-18 23:55:41 +00:00
|
|
|
|
state=recurrent_state
|
2023-09-02 01:58:29 +00:00
|
|
|
|
)
|
2023-08-27 00:53:23 +00:00
|
|
|
|
|
2023-09-13 02:28:07 +00:00
|
|
|
|
r = super().sample(
|
|
|
|
|
logits=logits,
|
|
|
|
|
resps_list=resps_list,
|
|
|
|
|
|
|
|
|
|
temperature=sampling_temperature,
|
|
|
|
|
top_p=sampling_top_p,
|
|
|
|
|
top_k=sampling_top_k,
|
|
|
|
|
repetition_penalty=sampling_repetition_penalty,
|
|
|
|
|
repetition_penalty_decay=sampling_repetition_penalty_decay,
|
|
|
|
|
length_penalty=sampling_length_penalty,
|
|
|
|
|
beam_width=sampling_beam_width,
|
2023-09-18 23:55:41 +00:00
|
|
|
|
|
|
|
|
|
mirostat=mirostat,
|
2023-09-13 02:28:07 +00:00
|
|
|
|
)
|
|
|
|
|
|
2023-09-18 23:55:41 +00:00
|
|
|
|
if mirostat is not None:
|
|
|
|
|
# r is the state
|
|
|
|
|
mirostat = r
|
|
|
|
|
# extract token from state
|
|
|
|
|
r = [ state["token"] for state in mirostat ]
|
2023-09-13 02:28:07 +00:00
|
|
|
|
# we do it here because the sampler will already expand our logits list
|
2023-09-18 23:55:41 +00:00
|
|
|
|
elif sampling_beam_width > 0:
|
2023-09-13 18:19:11 +00:00
|
|
|
|
# expand tuple
|
|
|
|
|
r, s = r
|
|
|
|
|
# first step, expand batch
|
|
|
|
|
if batch_size == 1:
|
|
|
|
|
batch_size *= sampling_beam_width
|
|
|
|
|
text_list = text_list * sampling_beam_width
|
|
|
|
|
proms_list = proms_list * sampling_beam_width
|
|
|
|
|
sequence_list = sequence_list * sampling_beam_width
|
|
|
|
|
stopped = torch.zeros(batch_size, device=device).bool()
|
|
|
|
|
|
|
|
|
|
# update scores
|
|
|
|
|
if sampling_beam_width_use_logs:
|
|
|
|
|
scores = [ (math.log(scores[i]) if scores[i] > 0 else 0) + math.log(score) for i, score in enumerate(s) ]
|
|
|
|
|
else:
|
|
|
|
|
scores = [ scores[i] * score for i, score in enumerate(s) ]
|
2023-09-13 02:28:07 +00:00
|
|
|
|
|
2023-09-02 01:58:29 +00:00
|
|
|
|
# append tokens
|
2023-08-02 21:53:35 +00:00
|
|
|
|
for i, ri in enumerate(r):
|
2023-09-02 01:58:29 +00:00
|
|
|
|
if self.stop_token in ri:
|
|
|
|
|
stopped[i] = True
|
2023-09-16 05:26:13 +00:00
|
|
|
|
sequence_list[i] = torch.cat([sequence_list[i], ri])
|
2023-09-02 01:58:29 +00:00
|
|
|
|
|
|
|
|
|
# stop token found
|
|
|
|
|
stopped |= r == self.stop_token
|
|
|
|
|
if stopped.all().item():
|
|
|
|
|
break
|
|
|
|
|
|
2023-09-13 18:19:11 +00:00
|
|
|
|
# pick the best scoring candidate
|
|
|
|
|
# desu this is always going to be candidate 0
|
|
|
|
|
if sampling_beam_width and len(scores) > 0:
|
|
|
|
|
best_idx, best_score = (0, 0)
|
|
|
|
|
for idx, score in enumerate(scores):
|
|
|
|
|
if best_score > score:
|
|
|
|
|
best_idx, best_score = idx, score
|
|
|
|
|
|
|
|
|
|
sequence_list = [sequence_list[best_idx]]
|
|
|
|
|
|
2023-09-04 03:46:08 +00:00
|
|
|
|
if self.interleave:
|
2023-09-16 05:26:13 +00:00
|
|
|
|
sequence_list = [self._deinterleave(r) for r in sequence_list]
|
|
|
|
|
return [self._prune(r) for r in sequence_list]
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def example_usage():
|
2023-08-04 01:26:36 +00:00
|
|
|
|
cfg.trainer.backend = "local"
|
2023-08-02 21:53:35 +00:00
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
from einops import repeat
|
|
|
|
|
|
|
|
|
|
from ..emb.qnt import decode_to_file
|
2023-08-04 01:26:36 +00:00
|
|
|
|
from ..engines import Engine
|
|
|
|
|
from tqdm import tqdm
|
2023-09-07 22:08:38 +00:00
|
|
|
|
from ..utils import wrapper as ml
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
2023-08-14 03:07:45 +00:00
|
|
|
|
device = "cuda"
|
2023-09-02 02:33:51 +00:00
|
|
|
|
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
|
2023-08-02 21:53:35 +00:00
|
|
|
|
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
|
|
|
|
|
def tokenize(content, lang_marker="en"):
|
|
|
|
|
split = content.split(" ")
|
|
|
|
|
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
|
|
|
|
|
return torch.tensor([*map(symmap.get, phones)]).to()
|
|
|
|
|
|
2023-09-02 02:33:51 +00:00
|
|
|
|
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
|
|
text_list = [
|
|
|
|
|
#torch.tensor([1, 2, 3], device=device),
|
|
|
|
|
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
|
|
|
|
|
]
|
|
|
|
|
proms_list = [
|
2023-09-04 02:27:13 +00:00
|
|
|
|
#x8(torch.tensor([1, 2, 3], device=device)),
|
|
|
|
|
qnt.to(device),
|
2023-08-02 21:53:35 +00:00
|
|
|
|
]
|
2023-08-04 01:26:36 +00:00
|
|
|
|
resps_list = [
|
2023-08-02 21:53:35 +00:00
|
|
|
|
qnt.to(device),
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
text_list = text_list[:1]
|
|
|
|
|
proms_list = proms_list[:1]
|
2023-08-04 01:26:36 +00:00
|
|
|
|
resps_list = resps_list[:1]
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
2023-08-04 01:26:36 +00:00
|
|
|
|
kwargs = {
|
|
|
|
|
'n_tokens': 1024,
|
|
|
|
|
'd_model': 1024,
|
|
|
|
|
'n_heads': 16,
|
2023-09-04 02:27:13 +00:00
|
|
|
|
'n_layers': 24,
|
2023-08-04 01:26:36 +00:00
|
|
|
|
}
|
2023-09-07 22:08:38 +00:00
|
|
|
|
|
|
|
|
|
"""
|
2023-09-04 03:46:08 +00:00
|
|
|
|
try:
|
|
|
|
|
kwargs['config'] = cfg.models.ar
|
|
|
|
|
except Exception as e:
|
2023-09-06 23:58:35 +00:00
|
|
|
|
pass
|
2023-09-07 22:08:38 +00:00
|
|
|
|
"""
|
2023-09-06 23:58:35 +00:00
|
|
|
|
|
2023-08-04 01:26:36 +00:00
|
|
|
|
model = AR(**kwargs).to(device)
|
2023-09-09 01:30:54 +00:00
|
|
|
|
steps = 500
|
2023-09-07 22:08:38 +00:00
|
|
|
|
optimizer = ml.Prodigy(model.parameters(), lr=1.0)
|
|
|
|
|
engine = Engine(model=model, optimizer=optimizer)
|
2023-08-04 01:26:36 +00:00
|
|
|
|
|
2023-09-07 22:08:38 +00:00
|
|
|
|
def sample( name, steps=600 ):
|
2023-08-04 01:26:36 +00:00
|
|
|
|
engine.eval()
|
|
|
|
|
out = engine(text_list, proms_list, max_steps=steps)
|
|
|
|
|
for i, o in enumerate(out):
|
|
|
|
|
wav, sr = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
|
engine.train()
|
2023-09-07 22:08:38 +00:00
|
|
|
|
t = trange(steps)
|
2023-08-04 01:26:36 +00:00
|
|
|
|
for i in t:
|
|
|
|
|
stats = {"step": i}
|
|
|
|
|
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
|
|
|
|
|
2023-09-02 02:33:51 +00:00
|
|
|
|
tqdm.write(f"{stats}")
|
2023-08-04 01:26:36 +00:00
|
|
|
|
|
|
|
|
|
sample("init", 75)
|
|
|
|
|
train()
|
|
|
|
|
sample("final")
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
example_usage()
|