Commit Graph

243 Commits

Author SHA1 Message Date
mrq
cddf8ca814 sort batches to try and reduce number of padded tokens in batched inference (also commented out F5 samples getting added to the demo page because I would have to regenerate them) 2024-12-11 22:45:38 -06:00
mrq
61ed662856 ACTUALLY actually fix KD-loss (the -inf in the logits was caused by cringecode) 2024-12-07 12:31:54 -06:00
mrq
34a66e1052 agnostified KD 2024-12-06 23:53:46 -06:00
mrq
953d3eb030 ugh 2024-12-06 22:35:30 -06:00
mrq
42fafbaaca actually fixed knowledge distillation because of errant -inf logits causing problems and needed to be filtered (and splitting text language / output audio language because it helps) 2024-12-06 21:55:20 -06:00
mrq
23d402bf01 added knowledge distillation in the trainer (sadly it is not agnostic because of the grave mistake of further processing the batch within the forward pass, so subsequent calls do not match......) 2024-12-05 23:05:52 -06:00
mrq
84a05acb6d touch ups in docs 2024-12-02 19:10:42 -06:00
mrq
4aa685e749 what has science done 2024-11-22 16:45:40 -06:00
mrq
147219a5e0 huge oversight in the attention masking......... (i realized I have not been providing a non-causal mask to non-causal tasks) 2024-11-22 13:44:43 -06:00
mrq
8aafae91fd dont use timeembedding 2024-11-21 23:14:52 -06:00
mrq
2cef97e43f cleanup 2024-11-21 23:08:43 -06:00
mrq
190a917b3e I did it. 2024-11-19 12:24:33 -06:00
mrq
6cfdf94bf9 swap priority to use nar-len if available, added notes 2024-11-18 09:40:04 -06:00
mrq
069b27570f set option to set training masking ratio (I don't think for tts a fixed masking ratio is beneficial since the magic of the AR+NAR is being able to still reference the prior sequence of tokens for predicting things) 2024-11-17 17:04:07 -06:00
mrq
88d840218d default set cfg strength to 3.0 since the reference model is updated 2024-11-17 10:23:40 -06:00
mrq
a3e1fa3518 ugh 2024-11-17 09:28:33 -06:00
mrq
23fdba0c98 tweaks and changes 2024-11-16 15:49:06 -06:00
mrq
2fbeacfe92 ugh 2024-11-14 22:18:33 -06:00
mrq
39096f8ff3 redid loss calculation to be cleaner, and position ID generation, and other things (I might need to train the NAR-len from scratch and not resume from an existing checkpoint.........) 2024-11-14 22:17:47 -06:00
mrq
e412e98125 ugh 2024-11-14 07:34:22 -06:00
mrq
c00fc18b62 actually use the right embedding for nar-len 2024-11-13 18:04:04 -06:00
mrq
3ea8a610d6 fix STT 2024-11-13 14:27:15 -06:00
mrq
910033343c overhauled how the right resp level / classifier gets picked to avoid cringemath 2024-11-13 13:31:17 -06:00
mrq
269648605e move NAR-len rvq level 0 to separate embedding 2024-11-13 11:38:58 -06:00
mrq
be83ddabaa better causal-ness for split loss calc, and also do masking for NAR-len for it 2024-11-13 10:17:52 -06:00
mrq
6b76419123 ugh 2024-11-13 09:54:20 -06:00
mrq
ad7cfffc00 NAR-len RVQ-0 was being trained causally............. 2024-11-13 09:43:50 -06:00
mrq
8286aa54c8 do not pass timestep token/embedding since it doesn't seem to matter at all after all, fixed training masking rate to 80% because a paper said so 2024-11-13 09:07:10 -06:00
mrq
0f2584eba7 new meme sampler PogChamp new meme sampler PogChamp (it sort of helps?) 2024-11-12 22:30:09 -06:00
mrq
663f07038d haha... (do not create a token dropout/noise mask when not training (this sadly didnt fix NAR-len output)) 2024-11-12 16:41:58 -06:00
mrq
8927bad7bc actually fixed rep pen (for ar and nar, it seems to help with nar unmasking) 2024-11-11 21:40:19 -06:00
mrq
2f56696506 overhauled inference/sampler kwargs to stop being a bloated mess 2024-11-11 20:21:16 -06:00
mrq
9cb0b6901b unified nar.py into ar_nar.py 2024-11-10 12:19:48 -06:00
mrq
a9d2faf2d7 all I can do now until I wait for the model to (re)train for pure NAR 2024-11-09 22:57:34 -06:00
mrq
ad7e290a5e ugh (ROCm seems to silently clamp any token value >= logits.shape[-1] for loss calculation, while cuda will throw an assert, making it hard to find this dumb fuckup) 2024-11-09 19:40:02 -06:00
mrq
943fe70c10 I don't know why this fixes an assert thrown but it does 2024-11-09 19:04:13 -06:00
mrq
f50d92ba6c Almost made a mistake 2024-11-09 18:12:54 -06:00
mrq
c6a38693a2 This better work 2024-11-09 18:04:59 -06:00
mrq
8b3d1cf70a Something's Wrong 2024-11-09 15:07:43 -06:00
mrq
69b0b3b854 set timestep tensor to whatever the time embedding's dtype is because it'll gripe under amp 2024-11-09 00:11:16 -06:00
mrq
5a09a5f6e9 I forgot about the time embedding... 2024-11-08 22:46:26 -06:00
mrq
811b15d280 I suppose I just have a shit training method since the sampler is as solid as I can get it............... 2024-11-08 22:05:41 -06:00
mrq
13b54953bd agony 2024-11-08 13:34:39 -06:00
mrq
c127c4e488 'borrowed' a sampling scheduler for NAR-len's RVQ level 0 (better than before, but still not good enough) 2024-11-07 21:19:14 -06:00
mrq
e108c54daf new NAR-len training paradigm...... 2024-11-07 11:32:11 -06:00
mrq
ed174c589e ugh 2024-11-07 09:19:21 -06:00
mrq
5698188824 あたしって、ほんとバカ 2024-11-07 09:10:18 -06:00
mrq
105ed51159 I guess I'll fall for the NAR-len meme again (I don't know where my previous weights are, so I need to train it again to test something) 2024-11-06 19:17:12 -06:00
mrq
9e65e05e83 more windows specific fixes, limit gradio to <5.0.0 on linux (it works on windows, but not on my linux machine tm) 2024-11-04 18:00:33 -06:00
mrq
d229725c76 more adjustments (adjustments of early-exit entropy/varentropy thresholds, default rep pen being 1.5, experimental refine-on-stop, etc.) 2024-11-03 18:31:28 -06:00