|
a507b769a1
|
sped up inferencing by not doing .tolist() for rep pen / length pen (and a bug fix in the web UI from prev commit)
|
2024-10-04 22:18:20 -05:00 |
|
|
54203c059d
|
validated rep pen for STT (sometimes needed to wrangle the model)
|
2024-09-08 08:30:30 -05:00 |
|
|
6a967f91b9
|
oops
|
2024-09-07 22:13:49 -05:00 |
|
|
4bd9bb39c8
|
webui for STT (still need to bake the model to handle it better, a few hours so far has it generate what looks like a normal transcription but does not correlate to the audio right now)
|
2024-09-06 15:13:04 -05:00 |
|
|
341e19162b
|
fixes, again
|
2024-09-06 11:41:41 -05:00 |
|
|
413097f5f7
|
fixes
|
2024-09-05 21:42:59 -05:00 |
|
|
54547b74d8
|
experimental implementation of STT (need to actually test on a model, test trainer seems to work)
|
2024-09-05 20:43:20 -05:00 |
|
|
b7b99a25f1
|
added ability to specify attention backend for CLI and webui (because im tired of editing the yaml)
|
2024-08-26 19:33:51 -05:00 |
|
|
0d706ec6a1
|
added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm
|
2024-08-26 19:13:34 -05:00 |
|
|
6b0891448c
|
pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good)
|
2024-08-25 20:07:27 -05:00 |
|
|
40e1799adc
|
fixed xformers and flash_attn to actually work now
|
2024-08-19 01:03:35 -05:00 |
|
|
29c35528e5
|
the sooner I accept there's no FA for V100s the sooner I'll go to bed
|
2024-08-18 23:54:33 -05:00 |
|
|
d636edd3a2
|
added flash_attn LlamaAttention (including flash_attn==1.0.9)
|
2024-08-18 20:51:14 -05:00 |
|
|
2a1794c084
|
ughghghhhh
|
2024-08-09 21:15:01 -05:00 |
|
|
d04f6911b4
|
oops
|
2024-08-08 19:38:55 -05:00 |
|
|
949339a3fa
|
do not include SDPA attention if there's no available SDPA backends
|
2024-08-06 20:42:39 -05:00 |
|
|
7cdfa3dc0c
|
updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup
|
2024-08-05 15:59:25 -05:00 |
|
|
debcc93e7e
|
add adapted MixtralAttention for when I make a bad decision to actually train a MoE
|
2024-08-04 22:03:22 -05:00 |
|
|
3a65cc4b22
|
fix issue with sft and shared tensors...
|
2024-08-04 19:56:21 -05:00 |
|
|
23f3b56fda
|
oops
|
2024-08-04 08:18:57 -05:00 |
|
|
6a733eb2ed
|
changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful
|
2024-08-03 22:10:21 -05:00 |
|
|
d0a5c7eca2
|
more coping with the NAR len
|
2024-08-03 20:23:36 -05:00 |
|
|
11fa3da665
|
some cleanup, fixed the wrapper attention to explicitly use other sdpa backends
|
2024-08-03 19:51:00 -05:00 |
|
|
9564ecda43
|
wrapper attention class for other sdpa backends + xformers seems to have broke...
|
2024-08-03 15:12:11 -05:00 |
|
|
9e1989be1b
|
tweaked initial NAR pass's initial token embeddings to use a different value, or osmething
|
2024-08-03 09:01:37 -05:00 |
|
|
26f74c5739
|
somehow fixed non-unified position IDs for the NAR-len
|
2024-08-03 08:43:42 -05:00 |
|
|
66407e5bdb
|
tweaks for the NAR-len model, maybe
|
2024-08-03 08:40:39 -05:00 |
|
|
97c5241bef
|
fixes, throw an exception when using NAR only model with non-unified position IDs, since for some reason it outputs garbage for the NAR
|
2024-08-02 22:25:49 -05:00 |
|
|
b4c895114c
|
naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there)
|
2024-08-01 20:12:06 -05:00 |
|
|
387358bc8a
|
fixes for the NAR-len model, and documentation some config options, and a better way to handle resizing modules on state_dict load
|
2024-07-31 20:35:09 -05:00 |
|
|
07f8e2ad06
|
added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight)
|
2024-07-30 20:53:51 -05:00 |
|
|
ebf848d249
|
possible speedup for samplers that require a list of previous tokens (the DRY sampler made me realize that I should copy the tolist() thing from the rep pen sampler for everything else)
|
2024-07-29 20:23:26 -05:00 |
|
|
55b0121b1a
|
trying (and failing) to nail a weird regression in fancier attentions
|
2024-07-29 19:53:37 -05:00 |
|
|
c2f5b916fc
|
added what I think is DRY sampling
|
2024-07-29 19:15:07 -05:00 |
|
|
1acb0e9c84
|
added experimental training setting to perform token dropout to MAYBE compensate for errors from the preceding RVQ level (two types: token error offset, token dropout embedding replace)
|
2024-07-24 19:35:17 -05:00 |
|
|
75b04686f8
|
added prom-less training / inferencing, some other things
|
2024-07-22 19:36:07 -05:00 |
|
|
d53038a9e4
|
actually have split classifiers working
|
2024-07-19 15:33:31 -05:00 |
|
|
28a674e0f1
|
fixes...
|
2024-07-18 23:25:32 -05:00 |
|
|
39f961abcd
|
test trainer (vall_e.models.ar_nar) tests some SpeechX features
|
2024-07-18 18:46:45 -05:00 |
|
|
83a0954f85
|
fixes for re-introducing SpeechX tasks (need to actually validate if these all do the right things)
|
2024-07-18 17:16:32 -05:00 |
|
|
97e768601c
|
re-introducing SpeechX tasks (need to validate them all, everything works with base tts anyways)
|
2024-07-18 16:16:14 -05:00 |
|
|
c2b8035e74
|
oops, kept forgetting to actually pass in lang/tone tokens (despite not really using these at the moment)
|
2024-07-18 14:18:34 -05:00 |
|
|
22fe53508c
|
added experimental disjointed position IDs (because I *think* this might help because technically a sequence is made up of several parts, and the position embeddings shouldn't be unified)
|
2024-07-16 19:52:41 -05:00 |
|
|
fe0f235335
|
mechanism to store the model config inside the weights and load them, some other things to allow LoRA training on the RetNet (gradient checkpointing will gripe about inputs not having require_grad and nothing seems to remedy it)
|
2024-07-16 18:23:13 -05:00 |
|
|
3acc54df22
|
allow loading a different model within the web ui (apparently I did not have the web UI in the documentation)
|
2024-07-15 19:59:48 -05:00 |
|
|
f770467eb3
|
stuff
|
2024-07-01 18:13:29 -05:00 |
|
|
dced595391
|
more cleanup
|
2024-06-30 11:00:12 -05:00 |
|
|
bc2a6fa756
|
sanity cleanup: moved experimental features under its own thing
|
2024-06-30 10:37:33 -05:00 |
|
|
b21f74a5c5
|
added summing of external embeddings (at this point i dont think any amount of cope bandaids will get DAC to train nicely, I think the RVQ levels the NAR tends add too much noise if they're not accurate)
|
2024-06-29 23:42:30 -05:00 |
|
|
793ccb16fb
|
ugh
|
2024-06-29 22:14:35 -05:00 |
|