Commit Graph

224 Commits

Author SHA1 Message Date
mrq
e412e98125 ugh 2024-11-14 07:34:22 -06:00
mrq
c00fc18b62 actually use the right embedding for nar-len 2024-11-13 18:04:04 -06:00
mrq
3ea8a610d6 fix STT 2024-11-13 14:27:15 -06:00
mrq
910033343c overhauled how the right resp level / classifier gets picked to avoid cringemath 2024-11-13 13:31:17 -06:00
mrq
269648605e move NAR-len rvq level 0 to separate embedding 2024-11-13 11:38:58 -06:00
mrq
be83ddabaa better causal-ness for split loss calc, and also do masking for NAR-len for it 2024-11-13 10:17:52 -06:00
mrq
6b76419123 ugh 2024-11-13 09:54:20 -06:00
mrq
ad7cfffc00 NAR-len RVQ-0 was being trained causally............. 2024-11-13 09:43:50 -06:00
mrq
8286aa54c8 do not pass timestep token/embedding since it doesn't seem to matter at all after all, fixed training masking rate to 80% because a paper said so 2024-11-13 09:07:10 -06:00
mrq
0f2584eba7 new meme sampler PogChamp new meme sampler PogChamp (it sort of helps?) 2024-11-12 22:30:09 -06:00
mrq
663f07038d haha... (do not create a token dropout/noise mask when not training (this sadly didnt fix NAR-len output)) 2024-11-12 16:41:58 -06:00
mrq
8927bad7bc actually fixed rep pen (for ar and nar, it seems to help with nar unmasking) 2024-11-11 21:40:19 -06:00
mrq
2f56696506 overhauled inference/sampler kwargs to stop being a bloated mess 2024-11-11 20:21:16 -06:00
mrq
9cb0b6901b unified nar.py into ar_nar.py 2024-11-10 12:19:48 -06:00
mrq
a9d2faf2d7 all I can do now until I wait for the model to (re)train for pure NAR 2024-11-09 22:57:34 -06:00
mrq
ad7e290a5e ugh (ROCm seems to silently clamp any token value >= logits.shape[-1] for loss calculation, while cuda will throw an assert, making it hard to find this dumb fuckup) 2024-11-09 19:40:02 -06:00
mrq
943fe70c10 I don't know why this fixes an assert thrown but it does 2024-11-09 19:04:13 -06:00
mrq
f50d92ba6c Almost made a mistake 2024-11-09 18:12:54 -06:00
mrq
c6a38693a2 This better work 2024-11-09 18:04:59 -06:00
mrq
8b3d1cf70a Something's Wrong 2024-11-09 15:07:43 -06:00
mrq
69b0b3b854 set timestep tensor to whatever the time embedding's dtype is because it'll gripe under amp 2024-11-09 00:11:16 -06:00
mrq
5a09a5f6e9 I forgot about the time embedding... 2024-11-08 22:46:26 -06:00
mrq
811b15d280 I suppose I just have a shit training method since the sampler is as solid as I can get it............... 2024-11-08 22:05:41 -06:00
mrq
13b54953bd agony 2024-11-08 13:34:39 -06:00
mrq
c127c4e488 'borrowed' a sampling scheduler for NAR-len's RVQ level 0 (better than before, but still not good enough) 2024-11-07 21:19:14 -06:00
mrq
e108c54daf new NAR-len training paradigm...... 2024-11-07 11:32:11 -06:00
mrq
ed174c589e ugh 2024-11-07 09:19:21 -06:00
mrq
5698188824 あたしって、ほんとバカ 2024-11-07 09:10:18 -06:00
mrq
105ed51159 I guess I'll fall for the NAR-len meme again (I don't know where my previous weights are, so I need to train it again to test something) 2024-11-06 19:17:12 -06:00
mrq
9e65e05e83 more windows specific fixes, limit gradio to <5.0.0 on linux (it works on windows, but not on my linux machine tm) 2024-11-04 18:00:33 -06:00
mrq
d229725c76 more adjustments (adjustments of early-exit entropy/varentropy thresholds, default rep pen being 1.5, experimental refine-on-stop, etc.) 2024-11-03 18:31:28 -06:00
mrq
aee08b7307 changed layerskip float16 training warning (since it didnt seem to fry on my 4xV100 system) 2024-11-03 09:58:29 -06:00
mrq
3826f9bae4 saner mask creation? (it doesnt matter, kv cache wont work) 2024-11-02 21:00:21 -05:00
mrq
ded746e157 very, very naive layerskip speculative sampling (it just checks if the current layer's state is good enough) 2024-11-02 11:49:05 -05:00
mrq
ec79230965 shuffled web UI options hidden by cfg.experimental to its own tab, expose early exit selection to inferencing (it kinda works naively, still need to implement self-speculation) 2024-11-01 21:30:06 -05:00
mrq
9b6c57bc57 third time's the charm (for some reason it escaped me that I should treat early exit loss as an aux_loss to be used with the normal loss, as if I was training a MoE's router) 2024-11-01 12:50:37 -05:00
mrq
76ebef45dc off-by-one... 2024-10-31 13:24:48 -05:00
mrq
b63293cbbe ugh 2024-10-30 22:49:11 -05:00
mrq
a22534e8f4 layer skip training implemented (need to gut the inferencing from the repo, and to actually see if the model can benefit from this) 2024-10-30 20:05:45 -05:00
mrq
8eb9a4056b modified default arguments (ar temp = 0 and rep pen = 1.125 seems to be stable, at least given the few things i tested), do not pass top k/top p/min p to NAR even though technically none of those things should matter when greedy sampling 2024-10-22 18:12:39 -05:00
mrq
fc8dfd8617 made greedy AR sampling viable (and preferable), with caveats (per comment in vall_e.models.ar_nar) 2024-10-18 16:55:00 -05:00
mrq
84005c5b00 entropix apparently processes the entire sequence of logits but it falls apart when doing that 2024-10-13 12:01:12 -05:00
mrq
c800d28bb8 respect attention defined in the yaml for web UI (which might explain why theres been a discrepancy in outputs for me) 2024-10-13 11:02:24 -05:00
mrq
d405f243d4 at wits end in trying to output the right attention scores 2024-10-12 23:53:13 -05:00
mrq
04e983b86b modified demo page to be more modular with demoing comparisons, actually provide a path to use modified naive attention, entropix sampling is not tied to an experimental yaml flag now 2024-10-12 11:27:55 -05:00
mrq
666e8038fb ugh 2024-10-12 10:41:35 -05:00
mrq
d6f7c86a5c entropix tweaks (it doesn't output garbage but it loves to go for silence) 2024-10-12 09:46:18 -05:00
mrq
d0ab7d755a added min-p (really does not seem useful since it's very sensitive), more tweaks to entropix 2024-10-11 22:36:06 -05:00
mrq
bef43a0c18 added experimental entropix sampling support 2024-10-11 21:18:26 -05:00
mrq
acdce66d4e readme tweaks, set the (unused) default model download URL back to the base ar+nar-llama-8 model, as ar+nar-tts+stt-llama-8 was renamed back to it since it performs well 2024-10-05 22:53:53 -05:00