2103 lines
71 KiB
Python
Executable File
2103 lines
71 KiB
Python
Executable File
import os
|
|
if 'XDG_CACHE_HOME' not in os.environ:
|
|
os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/'))
|
|
|
|
if 'TORTOISE_MODELS_DIR' not in os.environ:
|
|
os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/'))
|
|
|
|
if 'TRANSFORMERS_CACHE' not in os.environ:
|
|
os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/'))
|
|
|
|
import argparse
|
|
import time
|
|
import json
|
|
import base64
|
|
import re
|
|
import urllib.request
|
|
import signal
|
|
import gc
|
|
import subprocess
|
|
import psutil
|
|
import yaml
|
|
import hashlib
|
|
|
|
import tqdm
|
|
import torch
|
|
import torchaudio
|
|
import music_tag
|
|
import gradio as gr
|
|
import gradio.utils
|
|
import pandas as pd
|
|
|
|
from datetime import datetime
|
|
from datetime import timedelta
|
|
|
|
from tortoise.api import TextToSpeech, MODELS, get_model_path, pad_or_truncate
|
|
from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir, get_voices
|
|
from tortoise.utils.text import split_and_recombine_text
|
|
from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, do_gc
|
|
|
|
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
|
|
|
|
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
|
|
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
|
|
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp"]
|
|
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band']
|
|
|
|
GENERATE_SETTINGS_ARGS = None
|
|
|
|
LEARNING_RATE_SCHEMES = {"Multistep": "MultiStepLR", "Cos. Annealing": "CosineAnnealingLR_Restart"}
|
|
LEARNING_RATE_SCHEDULE = [ 9, 18, 25, 33 ]
|
|
|
|
args = None
|
|
tts = None
|
|
tts_loading = False
|
|
webui = None
|
|
voicefixer = None
|
|
whisper_model = None
|
|
training_state = None
|
|
|
|
current_voice = None
|
|
|
|
def generate(**kwargs):
|
|
parameters = {}
|
|
parameters.update(kwargs)
|
|
|
|
voice = parameters['voice']
|
|
progress = parameters['progress'] if 'progress' in parameters else None
|
|
if parameters['seed'] == 0:
|
|
parameters['seed'] = None
|
|
|
|
usedSeed = parameters['seed']
|
|
|
|
global args
|
|
global tts
|
|
|
|
unload_whisper()
|
|
unload_voicefixer()
|
|
|
|
if not tts:
|
|
# should check if it's loading or unloaded, and load it if it's unloaded
|
|
if tts_loading:
|
|
raise Exception("TTS is still initializing...")
|
|
if progress is not None:
|
|
progress(0, "Initializing TTS...")
|
|
load_tts()
|
|
if hasattr(tts, "loading") and tts.loading:
|
|
raise Exception("TTS is still initializing...")
|
|
|
|
do_gc()
|
|
|
|
voice_samples = None
|
|
conditioning_latents =None
|
|
sample_voice = None
|
|
|
|
voice_cache = {}
|
|
def fetch_voice( voice ):
|
|
cache_key = f'{voice}:{tts.autoregressive_model_hash[:8]}'
|
|
if cache_key in voice_cache:
|
|
return voice_cache[cache_key]
|
|
|
|
print(f"Loading voice: {voice} with model {tts.autoregressive_model_hash[:8]}")
|
|
sample_voice = None
|
|
if voice == "microphone":
|
|
if parameters['mic_audio'] is None:
|
|
raise Exception("Please provide audio from mic when choosing `microphone` as a voice input")
|
|
voice_samples, conditioning_latents = [load_audio(parameters['mic_audio'], tts.input_sample_rate)], None
|
|
elif voice == "random":
|
|
voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents()
|
|
else:
|
|
if progress is not None:
|
|
progress(0, desc=f"Loading voice: {voice}")
|
|
|
|
voice_samples, conditioning_latents = load_voice(voice, model_hash=tts.autoregressive_model_hash)
|
|
|
|
if voice_samples and len(voice_samples) > 0:
|
|
if conditioning_latents is None:
|
|
conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=parameters['voice_latents_chunks'])
|
|
|
|
sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu()
|
|
voice_samples = None
|
|
|
|
voice_cache[cache_key] = (voice_samples, conditioning_latents, sample_voice)
|
|
return voice_cache[cache_key]
|
|
|
|
def get_settings( override=None ):
|
|
settings = {
|
|
'temperature': float(parameters['temperature']),
|
|
|
|
'top_p': float(parameters['top_p']),
|
|
'diffusion_temperature': float(parameters['diffusion_temperature']),
|
|
'length_penalty': float(parameters['length_penalty']),
|
|
'repetition_penalty': float(parameters['repetition_penalty']),
|
|
'cond_free_k': float(parameters['cond_free_k']),
|
|
|
|
'num_autoregressive_samples': parameters['num_autoregressive_samples'],
|
|
'sample_batch_size': args.sample_batch_size,
|
|
'diffusion_iterations': parameters['diffusion_iterations'],
|
|
|
|
'voice_samples': None,
|
|
'conditioning_latents': None,
|
|
|
|
'use_deterministic_seed': parameters['seed'],
|
|
'return_deterministic_state': True,
|
|
'k': parameters['candidates'],
|
|
'diffusion_sampler': parameters['diffusion_sampler'],
|
|
'breathing_room': parameters['breathing_room'],
|
|
'progress': parameters['progress'],
|
|
'half_p': "Half Precision" in parameters['experimentals'],
|
|
'cond_free': "Conditioning-Free" in parameters['experimentals'],
|
|
'cvvp_amount': parameters['cvvp_weight'],
|
|
'autoregressive_model': args.autoregressive_model,
|
|
}
|
|
|
|
# could be better to just do a ternary on everything above, but i am not a professional
|
|
selected_voice = voice
|
|
if override is not None:
|
|
if 'voice' in override:
|
|
selected_voice = override['voice']
|
|
|
|
for k in override:
|
|
if k not in settings:
|
|
continue
|
|
settings[k] = override[k]
|
|
|
|
if settings['autoregressive_model'] is not None:
|
|
if settings['autoregressive_model'] == "auto":
|
|
settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice)
|
|
tts.load_autoregressive_model(settings['autoregressive_model'])
|
|
|
|
settings['voice_samples'], settings['conditioning_latents'], _ = fetch_voice(voice=selected_voice)
|
|
|
|
# clamp it down for the insane users who want this
|
|
# it would be wiser to enforce the sample size to the batch size, but this is what the user wants
|
|
settings['sample_batch_size'] = args.sample_batch_size
|
|
if not settings['sample_batch_size']:
|
|
settings['sample_batch_size'] = tts.autoregressive_batch_size
|
|
if settings['num_autoregressive_samples'] < settings['sample_batch_size']:
|
|
settings['sample_batch_size'] = settings['num_autoregressive_samples']
|
|
|
|
if settings['conditioning_latents'] is not None and len(settings['conditioning_latents']) == 2 and settings['cvvp_amount'] > 0:
|
|
print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents with 'Slimmer voice latents' unchecked.")
|
|
settings['cvvp_amount'] = 0
|
|
|
|
return settings
|
|
|
|
if not parameters['delimiter']:
|
|
parameters['delimiter'] = "\n"
|
|
elif parameters['delimiter'] == "\\n":
|
|
parameters['delimiter'] = "\n"
|
|
|
|
if parameters['delimiter'] and parameters['delimiter'] != "" and parameters['delimiter'] in parameters['text']:
|
|
texts = parameters['text'].split(parameters['delimiter'])
|
|
else:
|
|
texts = split_and_recombine_text(parameters['text'])
|
|
|
|
full_start_time = time.time()
|
|
|
|
outdir = f"./results/{voice}/"
|
|
os.makedirs(outdir, exist_ok=True)
|
|
|
|
audio_cache = {}
|
|
resample = None
|
|
|
|
if tts.output_sample_rate != args.output_sample_rate:
|
|
resampler = torchaudio.transforms.Resample(
|
|
tts.output_sample_rate,
|
|
args.output_sample_rate,
|
|
lowpass_filter_width=16,
|
|
rolloff=0.85,
|
|
resampling_method="kaiser_window",
|
|
beta=8.555504641634386,
|
|
)
|
|
|
|
volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None
|
|
|
|
idx = 0
|
|
idx_cache = {}
|
|
for i, file in enumerate(os.listdir(outdir)):
|
|
filename = os.path.basename(file)
|
|
extension = os.path.splitext(filename)[1]
|
|
if extension != ".json" and extension != ".wav":
|
|
continue
|
|
match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename)
|
|
if match and len(match) > 0:
|
|
key = int(match[0])
|
|
idx_cache[key] = True
|
|
|
|
if len(idx_cache) > 0:
|
|
keys = sorted(list(idx_cache.keys()))
|
|
idx = keys[-1] + 1
|
|
|
|
idx = pad(idx, 4)
|
|
|
|
def get_name(line=0, candidate=0, combined=False):
|
|
name = f"{idx}"
|
|
if combined:
|
|
name = f"{name}_combined"
|
|
elif len(texts) > 1:
|
|
name = f"{name}_{line}"
|
|
if parameters['candidates'] > 1:
|
|
name = f"{name}_{candidate}"
|
|
return name
|
|
|
|
def get_info( voice, settings = None, latents = True ):
|
|
info = {}
|
|
info.update(parameters)
|
|
info['time'] = time.time()-full_start_time
|
|
|
|
info['datetime'] = datetime.now().isoformat()
|
|
info['model'] = tts.autoregressive_model_path
|
|
info['model_hash'] = tts.autoregressive_model_hash
|
|
info['progress'] = None
|
|
del info['progress']
|
|
|
|
if info['delimiter'] == "\n":
|
|
info['delimiter'] = "\\n"
|
|
|
|
if settings is not None:
|
|
for k in settings:
|
|
if k in info:
|
|
info[k] = settings[k]
|
|
|
|
if 'half_p' in settings and 'cond_free' in settings:
|
|
info['experimentals'] = []
|
|
if settings['half_p']:
|
|
info['experimentals'].append("Half Precision")
|
|
if settings['cond_free']:
|
|
info['experimentals'].append("Conditioning-Free")
|
|
|
|
if latents and "latents" not in info:
|
|
voice = info['voice']
|
|
model_hash = settings["model_hash"][:8] if settings is not None and "model_hash" in settings else tts.autoregressive_model_hash[:8]
|
|
|
|
dir = f'{get_voice_dir()}/{voice}/'
|
|
latents_path = f'{dir}/cond_latents_{model_hash}.pth'
|
|
|
|
if voice == "random" or voice == "microphone":
|
|
if latents and settings is not None and settings['conditioning_latents']:
|
|
os.makedirs(dir, exist_ok=True)
|
|
torch.save(conditioning_latents, latents_path)
|
|
|
|
if latents_path and os.path.exists(latents_path):
|
|
try:
|
|
with open(latents_path, 'rb') as f:
|
|
info['latents'] = base64.b64encode(f.read()).decode("ascii")
|
|
except Exception as e:
|
|
pass
|
|
|
|
return info
|
|
|
|
for line, cut_text in enumerate(texts):
|
|
if parameters['emotion'] == "Custom":
|
|
if parameters['prompt'] and parameters['prompt'].strip() != "":
|
|
cut_text = f"[{parameters['prompt']},] {cut_text}"
|
|
elif parameters['emotion'] != "None" and parameters['emotion']:
|
|
cut_text = f"[I am really {parameters['emotion'].lower()},] {cut_text}"
|
|
|
|
progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]'
|
|
print(f"{progress.msg_prefix} Generating line: {cut_text}")
|
|
start_time = time.time()
|
|
|
|
# do setting editing
|
|
match = re.findall(r'^(\{.+\}) (.+?)$', cut_text)
|
|
override = None
|
|
if match and len(match) > 0:
|
|
match = match[0]
|
|
try:
|
|
override = json.loads(match[0])
|
|
cut_text = match[1].strip()
|
|
except Exception as e:
|
|
raise Exception("Prompt settings editing requested, but received invalid JSON")
|
|
|
|
settings = get_settings( override=override )
|
|
gen, additionals = tts.tts(cut_text, **settings )
|
|
|
|
parameters['seed'] = additionals[0]
|
|
run_time = time.time()-start_time
|
|
print(f"Generating line took {run_time} seconds")
|
|
|
|
if not isinstance(gen, list):
|
|
gen = [gen]
|
|
|
|
for j, g in enumerate(gen):
|
|
audio = g.squeeze(0).cpu()
|
|
name = get_name(line=line, candidate=j)
|
|
|
|
settings['text'] = cut_text
|
|
settings['time'] = run_time
|
|
settings['datetime'] = datetime.now().isoformat(),
|
|
settings['model'] = tts.autoregressive_model_path
|
|
settings['model_hash'] = tts.autoregressive_model_hash
|
|
|
|
audio_cache[name] = {
|
|
'audio': audio,
|
|
'settings': get_info(voice=override['voice'] if override and 'voice' in override else voice, settings=settings)
|
|
}
|
|
# save here in case some error happens mid-batch
|
|
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate)
|
|
|
|
del gen
|
|
do_gc()
|
|
|
|
for k in audio_cache:
|
|
audio = audio_cache[k]['audio']
|
|
|
|
if resampler is not None:
|
|
audio = resampler(audio)
|
|
if volume_adjust is not None:
|
|
audio = volume_adjust(audio)
|
|
|
|
audio_cache[k]['audio'] = audio
|
|
torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate)
|
|
|
|
output_voices = []
|
|
for candidate in range(parameters['candidates']):
|
|
if len(texts) > 1:
|
|
audio_clips = []
|
|
for line in range(len(texts)):
|
|
name = get_name(line=line, candidate=candidate)
|
|
audio = audio_cache[name]['audio']
|
|
audio_clips.append(audio)
|
|
|
|
name = get_name(candidate=candidate, combined=True)
|
|
audio = torch.cat(audio_clips, dim=-1)
|
|
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate)
|
|
|
|
audio = audio.squeeze(0).cpu()
|
|
audio_cache[name] = {
|
|
'audio': audio,
|
|
'settings': get_info(voice=voice),
|
|
'output': True
|
|
}
|
|
else:
|
|
name = get_name(candidate=candidate)
|
|
audio_cache[name]['output'] = True
|
|
|
|
|
|
if args.voice_fixer:
|
|
if not voicefixer:
|
|
progress(0, "Loading voicefix...")
|
|
load_voicefixer()
|
|
|
|
try:
|
|
fixed_cache = {}
|
|
for name in progress.tqdm(audio_cache, desc="Running voicefix..."):
|
|
del audio_cache[name]['audio']
|
|
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
|
|
continue
|
|
|
|
path = f'{outdir}/{voice}_{name}.wav'
|
|
fixed = f'{outdir}/{voice}_{name}_fixed.wav'
|
|
voicefixer.restore(
|
|
input=path,
|
|
output=fixed,
|
|
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
|
|
#mode=mode,
|
|
)
|
|
|
|
fixed_cache[f'{name}_fixed'] = {
|
|
'settings': audio_cache[name]['settings'],
|
|
'output': True
|
|
}
|
|
audio_cache[name]['output'] = False
|
|
|
|
for name in fixed_cache:
|
|
audio_cache[name] = fixed_cache[name]
|
|
except Exception as e:
|
|
print(e)
|
|
print("\nFailed to run Voicefixer")
|
|
|
|
for name in audio_cache:
|
|
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
|
|
if args.prune_nonfinal_outputs:
|
|
audio_cache[name]['pruned'] = True
|
|
os.remove(f'{outdir}/{voice}_{name}.wav')
|
|
continue
|
|
|
|
output_voices.append(f'{outdir}/{voice}_{name}.wav')
|
|
|
|
if not args.embed_output_metadata:
|
|
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(audio_cache[name]['settings'], indent='\t') )
|
|
|
|
if args.embed_output_metadata:
|
|
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
|
|
if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']:
|
|
continue
|
|
|
|
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
|
|
metadata['lyrics'] = json.dumps(audio_cache[name]['settings'])
|
|
metadata.save()
|
|
|
|
if sample_voice is not None:
|
|
sample_voice = (tts.input_sample_rate, sample_voice.numpy())
|
|
|
|
info = get_info(voice=voice, latents=False)
|
|
print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n")
|
|
|
|
info['seed'] = usedSeed
|
|
if 'latents' in info:
|
|
del info['latents']
|
|
|
|
os.makedirs('./config/', exist_ok=True)
|
|
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(info, indent='\t') )
|
|
|
|
stats = [
|
|
[ parameters['seed'], "{:.3f}".format(info['time']) ]
|
|
]
|
|
|
|
return (
|
|
sample_voice,
|
|
output_voices,
|
|
stats,
|
|
)
|
|
|
|
def cancel_generate():
|
|
import tortoise.api
|
|
tortoise.api.STOP_SIGNAL = True
|
|
|
|
def hash_file(path, algo="md5", buffer_size=0):
|
|
hash = None
|
|
if algo == "md5":
|
|
hash = hashlib.md5()
|
|
elif algo == "sha1":
|
|
hash = hashlib.sha1()
|
|
else:
|
|
raise Exception(f'Unknown hash algorithm specified: {algo}')
|
|
|
|
if not os.path.exists(path):
|
|
raise Exception(f'Path not found: {path}')
|
|
|
|
with open(path, 'rb') as f:
|
|
if buffer_size > 0:
|
|
while True:
|
|
data = f.read(buffer_size)
|
|
if not data:
|
|
break
|
|
hash.update(data)
|
|
else:
|
|
hash.update(f.read())
|
|
|
|
return "{0}".format(hash.hexdigest())
|
|
|
|
def update_baseline_for_latents_chunks( voice ):
|
|
global current_voice
|
|
current_voice = voice
|
|
|
|
path = f'{get_voice_dir()}/{voice}/'
|
|
if not os.path.isdir(path):
|
|
return 1
|
|
|
|
dataset_file = f'./training/{voice}/train.txt'
|
|
if os.path.exists(dataset_file):
|
|
return 0 # 0 will leverage using the LJspeech dataset for computing latents
|
|
|
|
files = os.listdir(path)
|
|
|
|
total = 0
|
|
total_duration = 0
|
|
|
|
for file in files:
|
|
if file[-4:] != ".wav":
|
|
continue
|
|
|
|
metadata = torchaudio.info(f'{path}/{file}')
|
|
duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate
|
|
total_duration += duration
|
|
total = total + 1
|
|
|
|
|
|
# brain too fried to figure out a better way
|
|
if args.autocalculate_voice_chunk_duration_size == 0:
|
|
return int(total_duration / total) if total > 0 else 1
|
|
return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1
|
|
|
|
def compute_latents(voice=None, voice_samples=None, voice_latents_chunks=0, progress=None):
|
|
global tts
|
|
global args
|
|
|
|
unload_whisper()
|
|
unload_voicefixer()
|
|
|
|
if not tts:
|
|
if tts_loading:
|
|
raise Exception("TTS is still initializing...")
|
|
load_tts()
|
|
|
|
if hasattr(tts, "loading") and tts.loading:
|
|
raise Exception("TTS is still initializing...")
|
|
|
|
if args.autoregressive_model == "auto":
|
|
tts.load_autoregressive_model(deduce_autoregressive_model(voice))
|
|
|
|
if voice:
|
|
load_from_dataset = voice_latents_chunks == 0
|
|
|
|
if load_from_dataset:
|
|
dataset_path = f'./training/{voice}/train.txt'
|
|
if not os.path.exists(dataset_path):
|
|
load_from_dataset = False
|
|
else:
|
|
with open(dataset_path, 'r', encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
|
|
print("Leveraging dataset for computing latents")
|
|
|
|
voice_samples = []
|
|
max_length = 0
|
|
for line in lines:
|
|
filename = f'./training/{voice}/{line.split("|")[0]}'
|
|
|
|
waveform = load_audio(filename, 22050)
|
|
max_length = max(max_length, waveform.shape[-1])
|
|
voice_samples.append(waveform)
|
|
|
|
for i in range(len(voice_samples)):
|
|
voice_samples[i] = pad_or_truncate(voice_samples[i], max_length)
|
|
|
|
voice_latents_chunks = len(voice_samples)
|
|
if voice_latents_chunks == 0:
|
|
print("Dataset is empty!")
|
|
load_from_dataset = True
|
|
if not load_from_dataset:
|
|
voice_samples, _ = load_voice(voice, load_latents=False)
|
|
|
|
if voice_samples is None:
|
|
return
|
|
|
|
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents, progress=progress)
|
|
|
|
if len(conditioning_latents) == 4:
|
|
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
|
|
|
|
outfile = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth'
|
|
torch.save(conditioning_latents, outfile)
|
|
print(f'Saved voice latents: {outfile}')
|
|
|
|
return conditioning_latents
|
|
|
|
# superfluous, but it cleans up some things
|
|
class TrainingState():
|
|
def __init__(self, config_path, keep_x_past_checkpoints=0, start=True):
|
|
# parse config to get its iteration
|
|
with open(config_path, 'r') as file:
|
|
self.config = yaml.safe_load(file)
|
|
|
|
gpus = self.config["gpus"]
|
|
|
|
self.killed = False
|
|
|
|
self.dataset_dir = f"./training/{self.config['name']}/finetune/"
|
|
self.batch_size = self.config['datasets']['train']['batch_size']
|
|
self.dataset_path = self.config['datasets']['train']['path']
|
|
with open(self.dataset_path, 'r', encoding="utf-8") as f:
|
|
self.dataset_size = len(f.readlines())
|
|
|
|
self.it = 0
|
|
self.its = self.config['train']['niter']
|
|
|
|
self.step = 0
|
|
self.steps = 1
|
|
|
|
self.epoch = 0
|
|
self.epochs = int(self.its*self.batch_size/self.dataset_size)
|
|
|
|
self.checkpoint = 0
|
|
self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq'])
|
|
|
|
self.buffer = []
|
|
|
|
self.open_state = False
|
|
self.training_started = False
|
|
|
|
self.info = {}
|
|
|
|
self.it_rate = ""
|
|
self.it_rates = 0
|
|
|
|
self.epoch_rate = ""
|
|
|
|
self.eta = "?"
|
|
self.eta_hhmmss = "?"
|
|
|
|
self.nan_detected = False
|
|
|
|
self.last_info_check_at = 0
|
|
self.statistics = {
|
|
'loss': [],
|
|
'lr': [],
|
|
}
|
|
self.losses = []
|
|
self.metrics = {
|
|
'step': "",
|
|
'rate': "",
|
|
'loss': "",
|
|
}
|
|
|
|
self.loss_milestones = [ 1.0, 0.15, 0.05 ]
|
|
|
|
if keep_x_past_checkpoints > 0:
|
|
self.cleanup_old(keep=keep_x_past_checkpoints)
|
|
if start:
|
|
self.spawn_process(config_path=config_path, gpus=gpus)
|
|
|
|
def spawn_process(self, config_path, gpus=1):
|
|
self.cmd = ['train.bat', config_path] if os.name == "nt" else ['./train.sh', config_path]
|
|
|
|
print("Spawning process: ", " ".join(self.cmd))
|
|
self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
|
|
|
|
def parse_metrics(self, data):
|
|
if isinstance(data, str):
|
|
if line.find('INFO: Training Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Training Metrics:")[-1])
|
|
data['mode'] = "training"
|
|
elif line.find('INFO: Validation Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
|
|
data['mode'] = "validation"
|
|
else:
|
|
return
|
|
|
|
self.info = data
|
|
if 'epoch' in self.info:
|
|
self.epoch = int(self.info['epoch'])
|
|
if 'it' in self.info:
|
|
self.it = int(self.info['it'])
|
|
if 'step' in self.info:
|
|
self.step = int(self.info['step'])
|
|
if 'steps' in self.info:
|
|
self.steps = int(self.info['steps'])
|
|
|
|
if 'iteration_rate' in self.info:
|
|
it_rate = self.info['iteration_rate'] * self.batch_size # why
|
|
self.it_rate = f'{"{:.3f}".format(1/it_rate)}it/s' if 0 < it_rate and it_rate < 1 else f'{"{:.3f}".format(it_rate)}s/it'
|
|
self.it_rates += it_rate
|
|
|
|
epoch_rate = self.it_rates / self.it * self.steps
|
|
if epoch_rate > 0:
|
|
self.epoch_rate = f'{"{:.3f}".format(1/epoch_rate)}epoch/s' if 0 < epoch_rate and epoch_rate < 1 else f'{"{:.3f}".format(epoch_rate)}s/epoch'
|
|
|
|
try:
|
|
self.eta = (self.its - self.it) * (self.it_rates / self.it)
|
|
eta = str(timedelta(seconds=int(self.eta)))
|
|
self.eta_hhmmss = eta
|
|
except Exception as e:
|
|
self.eta_hhmmss = "?"
|
|
pass
|
|
|
|
self.metrics['step'] = [f"{self.epoch}/{self.epochs}"]
|
|
if self.epochs != self.its:
|
|
self.metrics['step'].append(f"{self.it}/{self.its}")
|
|
if self.steps > 1:
|
|
self.metrics['step'].append(f"{self.step}/{self.steps}")
|
|
self.metrics['step'] = ", ".join(self.metrics['step'])
|
|
|
|
epoch = self.epoch + (self.step / self.steps)
|
|
if 'lr' in self.info:
|
|
self.statistics['lr'].append({'epoch': epoch, 'it': self.it, 'value': self.info['lr'], 'type': 'learning_rate'})
|
|
|
|
for k in ['loss_text_ce', 'loss_mel_ce', 'loss_gpt_total']:
|
|
if k not in self.info:
|
|
continue
|
|
|
|
if k == "loss_gpt_total":
|
|
self.losses.append( self.statistics['loss'][-1] )
|
|
else:
|
|
self.statistics['loss'].append({'epoch': epoch, 'it': self.it, 'value': self.info[k], 'type': f'{"val_" if data["mode"] == "validation" else ""}{k}' })
|
|
|
|
return data
|
|
|
|
def get_status(self):
|
|
message = None
|
|
|
|
self.metrics['rate'] = []
|
|
if self.epoch_rate:
|
|
self.metrics['rate'].append(self.epoch_rate)
|
|
if self.it_rate and self.epoch_rate[:-7] != self.it_rate[:-4]:
|
|
self.metrics['rate'].append(self.it_rate)
|
|
self.metrics['rate'] = ", ".join(self.metrics['rate'])
|
|
|
|
eta_hhmmss = self.eta_hhmmss if self.eta_hhmmss else "?"
|
|
|
|
self.metrics['loss'] = []
|
|
if 'lr' in self.info:
|
|
self.metrics['loss'].append(f'LR: {"{:.3e}".format(self.info["lr"])}')
|
|
|
|
if len(self.losses) > 0:
|
|
self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}')
|
|
|
|
if False and len(self.losses) >= 2:
|
|
deriv = 0
|
|
accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it
|
|
loss_value = self.losses[-1]["value"]
|
|
|
|
for i in range(accum_length):
|
|
d1_loss = self.losses[accum_length-i-1]["value"]
|
|
d2_loss = self.losses[accum_length-i-2]["value"]
|
|
dloss = (d2_loss - d1_loss)
|
|
|
|
d1_step = self.losses[accum_length-i-1]["it"]
|
|
d2_step = self.losses[accum_length-i-2]["it"]
|
|
dstep = (d2_step - d1_step)
|
|
|
|
if dstep == 0:
|
|
continue
|
|
|
|
inst_deriv = dloss / dstep
|
|
deriv += inst_deriv
|
|
|
|
deriv = deriv / accum_length
|
|
|
|
print("Deriv: ", deriv)
|
|
|
|
if deriv != 0: # dloss < 0:
|
|
next_milestone = None
|
|
for milestone in self.loss_milestones:
|
|
if loss_value > milestone:
|
|
next_milestone = milestone
|
|
break
|
|
|
|
print(f"Loss value: {loss_value} | Next milestone: {next_milestone} | Distance: {loss_value - next_milestone}")
|
|
|
|
if next_milestone:
|
|
# tfw can do simple calculus but not basic algebra in my head
|
|
est_its = (next_milestone - loss_value) / deriv * 100
|
|
print(f"Estimated: {est_its}")
|
|
if est_its >= 0:
|
|
self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its')
|
|
else:
|
|
est_loss = inst_deriv * (self.its - self.it) + loss_value
|
|
if est_loss >= 0:
|
|
self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}')
|
|
|
|
self.metrics['loss'] = ", ".join(self.metrics['loss'])
|
|
|
|
message = f"[{self.metrics['step']}] [{self.metrics['rate']}] [ETA: {eta_hhmmss}] [{self.metrics['loss']}]"
|
|
if self.nan_detected:
|
|
message = f"[!NaN DETECTED! {self.nan_detected}] {message}"
|
|
|
|
return message
|
|
|
|
def load_statistics(self, update=False):
|
|
if not os.path.isdir(f'{self.dataset_dir}/'):
|
|
return
|
|
|
|
infos = {}
|
|
highest_step = self.last_info_check_at
|
|
|
|
if not update:
|
|
self.statistics['loss'] = []
|
|
self.statistics['lr'] = []
|
|
self.it_rates = 0
|
|
|
|
logs = sorted([f'{self.dataset_dir}/{d}' for d in os.listdir(self.dataset_dir) if d[-4:] == ".log" ])
|
|
if update:
|
|
logs = [logs[-1]]
|
|
|
|
for log in logs:
|
|
with open(log, 'r', encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
|
|
for line in lines:
|
|
if line.find('INFO: Training Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Training Metrics:")[-1])
|
|
data['mode'] = "training"
|
|
elif line.find('INFO: Validation Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
|
|
data['mode'] = "validation"
|
|
else:
|
|
continue
|
|
|
|
if "it" not in data:
|
|
continue
|
|
|
|
it = data['it']
|
|
|
|
if update and it <= self.last_info_check_at:
|
|
continue
|
|
|
|
self.parse_metrics(data)
|
|
print(self.get_status())
|
|
# print(f"Iterations Left: {self.its - self.it} | Elapsed Time: {self.it_rates} | Time Remaining: {self.eta} | Message: {self.get_status()}")
|
|
|
|
self.last_info_check_at = highest_step
|
|
|
|
def cleanup_old(self, keep=2):
|
|
if keep <= 0:
|
|
return
|
|
|
|
if not os.path.isdir(self.dataset_dir):
|
|
return
|
|
|
|
models = sorted([ int(d[:-8]) for d in os.listdir(f'{self.dataset_dir}/models/') if d[-8:] == "_gpt.pth" ])
|
|
states = sorted([ int(d[:-6]) for d in os.listdir(f'{self.dataset_dir}/training_state/') if d[-6:] == ".state" ])
|
|
remove_models = models[:-keep]
|
|
remove_states = states[:-keep]
|
|
|
|
for d in remove_models:
|
|
path = f'{self.dataset_dir}/models/{d}_gpt.pth'
|
|
print("Removing", path)
|
|
os.remove(path)
|
|
for d in remove_states:
|
|
path = f'{self.dataset_dir}/training_state/{d}.state'
|
|
print("Removing", path)
|
|
os.remove(path)
|
|
|
|
def parse(self, line, verbose=False, keep_x_past_checkpoints=0, buffer_size=8, progress=None ):
|
|
self.buffer.append(f'{line}')
|
|
|
|
should_return = False
|
|
percent = 0
|
|
message = None
|
|
|
|
if line.find('Finished training') >= 0:
|
|
self.killed = True
|
|
# rip out iteration info
|
|
elif not self.training_started:
|
|
if line.find('Start training from epoch') >= 0:
|
|
self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations
|
|
|
|
match = re.findall(r'epoch: ([\d,]+)', line)
|
|
if match and len(match) > 0:
|
|
self.epoch = int(match[0].replace(",", ""))
|
|
match = re.findall(r'iter: ([\d,]+)', line)
|
|
if match and len(match) > 0:
|
|
self.it = int(match[0].replace(",", ""))
|
|
|
|
self.checkpoints = int((self.its - self.it) / self.config['logger']['save_checkpoint_freq'])
|
|
|
|
self.load_statistics()
|
|
|
|
should_return = True
|
|
else:
|
|
# INFO: Training Metrics: {"loss_text_ce": 4.308311939239502, "loss_mel_ce": 2.1610655784606934, "loss_gpt_total": 2.204148769378662, "lr": 0.0001, "it": 2, "step": 1, "steps": 1, "epoch": 1, "iteration_rate": 0.10700102965037028}
|
|
if line.find('INFO: Training Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Training Metrics:")[-1])
|
|
data['mode'] = "training"
|
|
elif line.find('INFO: Validation Metrics:') >= 0:
|
|
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
|
|
data['mode'] = "validation"
|
|
|
|
if data is not None:
|
|
if ': nan' in line and not self.nan_detected:
|
|
self.nan_detected = self.it
|
|
|
|
self.parse_metrics( data )
|
|
message = self.get_status()
|
|
|
|
if message:
|
|
percent = self.it / float(self.its) # self.epoch / float(self.epochs)
|
|
if progress is not None:
|
|
progress(percent, message)
|
|
|
|
self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}')
|
|
should_return = True
|
|
|
|
if verbose and not self.training_started:
|
|
should_return = True
|
|
|
|
self.buffer = self.buffer[-buffer_size:]
|
|
|
|
result = None
|
|
if should_return:
|
|
result = "".join(self.buffer) if not self.training_started else message
|
|
|
|
return (
|
|
result,
|
|
percent,
|
|
message,
|
|
)
|
|
|
|
try:
|
|
import altair as alt
|
|
alt.data_transformers.enable('default', max_rows=None)
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
def run_training(config_path, verbose=False, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)):
|
|
global training_state
|
|
if training_state and training_state.process:
|
|
return "Training already in progress"
|
|
|
|
|
|
# ensure we have the dvae.pth
|
|
get_model_path('dvae.pth')
|
|
|
|
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
|
|
torch.multiprocessing.freeze_support()
|
|
|
|
unload_tts()
|
|
unload_whisper()
|
|
unload_voicefixer()
|
|
|
|
training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints)
|
|
|
|
for line in iter(training_state.process.stdout.readline, ""):
|
|
if training_state.killed:
|
|
return
|
|
|
|
result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_checkpoints=keep_x_past_checkpoints, progress=progress )
|
|
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
|
|
if result:
|
|
yield result
|
|
|
|
if progress is not None and message:
|
|
progress(percent, message)
|
|
|
|
if training_state:
|
|
training_state.process.stdout.close()
|
|
return_code = training_state.process.wait()
|
|
training_state = None
|
|
|
|
def update_training_dataplot(config_path=None):
|
|
global training_state
|
|
losses = None
|
|
lrs = None
|
|
|
|
if not training_state:
|
|
if config_path:
|
|
training_state = TrainingState(config_path=config_path, start=False)
|
|
training_state.load_statistics()
|
|
message = training_state.get_status()
|
|
print(message)
|
|
|
|
if len(training_state.statistics['loss']) > 0:
|
|
losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
|
|
if len(training_state.statistics['lr']) > 0:
|
|
lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
|
|
del training_state
|
|
training_state = None
|
|
else:
|
|
training_state.load_statistics()
|
|
if len(training_state.statistics['loss']) > 0:
|
|
losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
|
|
if len(training_state.statistics['lr']) > 0:
|
|
lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
|
|
|
|
return (losses, lrs)
|
|
|
|
def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)):
|
|
global training_state
|
|
if not training_state or not training_state.process:
|
|
return "Training not in progress"
|
|
|
|
for line in iter(training_state.process.stdout.readline, ""):
|
|
result, percent, message = training_state.parse( line=line, verbose=verbose, progress=progress )
|
|
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
|
|
if result:
|
|
yield result
|
|
|
|
if progress is not None and message:
|
|
progress(percent, message)
|
|
|
|
def stop_training():
|
|
global training_state
|
|
if training_state is None:
|
|
return "No training in progress"
|
|
print("Killing training process...")
|
|
training_state.killed = True
|
|
|
|
children = []
|
|
# wrapped in a try/catch in case for some reason this fails outside of Linux
|
|
try:
|
|
children = [p.info for p in psutil.process_iter(attrs=['pid', 'name', 'cmdline']) if './src/train.py' in p.info['cmdline']]
|
|
except Exception as e:
|
|
pass
|
|
|
|
training_state.process.stdout.close()
|
|
training_state.process.terminate()
|
|
training_state.process.kill()
|
|
return_code = training_state.process.wait()
|
|
|
|
for p in children:
|
|
os.kill( p['pid'], signal.SIGKILL )
|
|
|
|
training_state = None
|
|
print("Killed training process.")
|
|
return f"Training cancelled: {return_code}"
|
|
|
|
def get_halfp_model_path():
|
|
autoregressive_model_path = get_model_path('autoregressive.pth')
|
|
return autoregressive_model_path.replace(".pth", "_half.pth")
|
|
|
|
def convert_to_halfp():
|
|
autoregressive_model_path = get_model_path('autoregressive.pth')
|
|
print(f'Converting model to half precision: {autoregressive_model_path}')
|
|
model = torch.load(autoregressive_model_path)
|
|
for k in model:
|
|
model[k] = model[k].half()
|
|
|
|
outfile = get_halfp_model_path()
|
|
torch.save(model, outfile)
|
|
print(f'Converted model to half precision: {outfile}')
|
|
|
|
def whisper_transcribe( file, language=None ):
|
|
# shouldn't happen, but it's for safety
|
|
if not whisper_model:
|
|
load_whisper_model(language=language)
|
|
|
|
if args.whisper_backend == "openai/whisper":
|
|
if not language:
|
|
language = None
|
|
|
|
return whisper_model.transcribe(file, language=language)
|
|
|
|
if args.whisper_backend == "lightmare/whispercpp":
|
|
res = whisper_model.transcribe(file)
|
|
segments = whisper_model.extract_text_and_timestamps( res )
|
|
|
|
result = {
|
|
'segments': []
|
|
}
|
|
for segment in segments:
|
|
reparsed = {
|
|
'start': segment[0] / 100.0,
|
|
'end': segment[1] / 100.0,
|
|
'text': segment[2],
|
|
}
|
|
result['segments'].append(reparsed)
|
|
return result
|
|
|
|
def validate_waveform( waveform, sample_rate ):
|
|
if not torch.any(waveform < 0):
|
|
return False
|
|
|
|
if waveform.shape[-1] < (.6 * sample_rate):
|
|
return False
|
|
return True
|
|
|
|
def transcribe_dataset( voice, language=None, skip_existings=False, progress=None ):
|
|
unload_tts()
|
|
|
|
global whisper_model
|
|
if whisper_model is None:
|
|
load_whisper_model(language=language)
|
|
|
|
|
|
results = {}
|
|
|
|
files = sorted( get_voices(load_latents=False)[voice] )
|
|
indir = f'./training/{voice}/'
|
|
infile = f'{indir}/whisper.json'
|
|
|
|
os.makedirs(f'{indir}/audio/', exist_ok=True)
|
|
|
|
if os.path.exists(infile):
|
|
results = json.load(open(infile, 'r', encoding="utf-8"))
|
|
|
|
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
|
|
basename = os.path.basename(file)
|
|
|
|
if basename in results and skip_existings:
|
|
print(f"Skipping already parsed file: {basename}")
|
|
continue
|
|
|
|
results[basename] = whisper_transcribe(file, language=language)
|
|
|
|
# lazy copy
|
|
waveform, sampling_rate = torchaudio.load(file)
|
|
torchaudio.save(f"{indir}/audio/{basename}", waveform, sampling_rate)
|
|
|
|
with open(infile, 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(results, indent='\t'))
|
|
|
|
do_gc()
|
|
|
|
unload_whisper()
|
|
|
|
return f"Processed dataset to: {indir}"
|
|
|
|
def slice_dataset( voice, trim_silence=True, start_offset=0, end_offset=0 ):
|
|
indir = f'./training/{voice}/'
|
|
infile = f'{indir}/whisper.json'
|
|
|
|
if not os.path.exists(infile):
|
|
raise Exception(f"Missing dataset: {infile}")
|
|
|
|
results = json.load(open(infile, 'r', encoding="utf-8"))
|
|
|
|
files = 0
|
|
segments = 0
|
|
for filename in results:
|
|
files += 1
|
|
|
|
result = results[filename]
|
|
waveform, sampling_rate = torchaudio.load(f'./voices/{voice}/{filename}')
|
|
|
|
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
|
|
segments +=1
|
|
start = int((segment['start'] + start_offset) * sampling_rate)
|
|
end = int((segment['end'] + end_offset) * sampling_rate)
|
|
|
|
if start < 0:
|
|
start = 0
|
|
if end >= waveform.shape[-1]:
|
|
end = waveform.shape[-1] - 1
|
|
|
|
sliced = waveform[:, start:end]
|
|
file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav")
|
|
|
|
if not validate_waveform( sliced, sampling_rate ):
|
|
print(f"Invalid waveform segment ({segment['start']}:{segment['end']}): {file}, skipping...")
|
|
continue
|
|
|
|
if trim_silence:
|
|
sliced = torchaudio.functional.vad( sliced, sampling_rate )
|
|
|
|
torchaudio.save(f"{indir}/audio/{file}", sliced, sampling_rate)
|
|
|
|
return f"Sliced segments: {files} => {segments}."
|
|
|
|
def prepare_dataset( voice, use_segments, text_length, audio_length ):
|
|
indir = f'./training/{voice}/'
|
|
infile = f'{indir}/whisper.json'
|
|
|
|
if not os.path.exists(infile):
|
|
raise Exception(f"Missing dataset: {infile}")
|
|
|
|
results = json.load(open(infile, 'r', encoding="utf-8"))
|
|
|
|
lines = {
|
|
'training': [],
|
|
'validation': [],
|
|
}
|
|
|
|
for filename in results:
|
|
result = results[filename]
|
|
segments = result['segments'] if use_segments else [{'text': result['text']}]
|
|
for segment in segments:
|
|
text = segment['text'].strip()
|
|
file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav") if use_segments else filename
|
|
path = f'{indir}/audio/{file}'
|
|
if not os.path.exists(path):
|
|
continue
|
|
|
|
culled = len(text) < text_length
|
|
if not culled and audio_length > 0:
|
|
metadata = torchaudio.info(path)
|
|
duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate
|
|
culled = duration < audio_length
|
|
|
|
lines['training' if not culled else 'validation'].append(f'audio/{file}|{text}')
|
|
|
|
training_joined = "\n".join(lines['training'])
|
|
validation_joined = "\n".join(lines['validation'])
|
|
|
|
with open(f'{indir}/train.txt', 'w', encoding="utf-8") as f:
|
|
f.write(training_joined)
|
|
|
|
with open(f'{indir}/validation.txt', 'w', encoding="utf-8") as f:
|
|
f.write(validation_joined)
|
|
|
|
msg = f"Prepared {len(lines['training'])} lines (validation: {len(lines['validation'])}).\n{training_joined}\n\n{validation_joined}"
|
|
return msg
|
|
|
|
def calc_iterations( epochs, lines, batch_size ):
|
|
iterations = int(epochs * lines / float(batch_size))
|
|
return iterations
|
|
|
|
def schedule_learning_rate( iterations, schedule=LEARNING_RATE_SCHEDULE ):
|
|
return [int(iterations * d) for d in schedule]
|
|
|
|
def optimize_training_settings( **kwargs ):
|
|
messages = []
|
|
settings = {}
|
|
settings.update(kwargs)
|
|
|
|
dataset_path = f"./training/{settings['voice']}/train.txt"
|
|
with open(dataset_path, 'r', encoding="utf-8") as f:
|
|
lines = len(f.readlines())
|
|
|
|
if settings['batch_size'] > lines:
|
|
settings['batch_size'] = lines
|
|
messages.append(f"Batch size is larger than your dataset, clamping batch size to: {settings['batch_size']}")
|
|
|
|
"""
|
|
if lines % settings['batch_size'] != 0:
|
|
settings['batch_size'] = int(lines / settings['batch_size'])
|
|
if settings['batch_size'] == 0:
|
|
settings['batch_size'] = 1
|
|
messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {settings['batch_size']}")
|
|
"""
|
|
if settings['gradient_accumulation_size'] == 0:
|
|
settings['gradient_accumulation_size'] = 1
|
|
|
|
if settings['batch_size'] / settings['gradient_accumulation_size'] < 2:
|
|
settings['gradient_accumulation_size'] = int(settings['batch_size'] / 2)
|
|
if settings['gradient_accumulation_size'] == 0:
|
|
settings['gradient_accumulation_size'] = 1
|
|
|
|
messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {settings['gradient_accumulation_size']}")
|
|
elif settings['batch_size'] % settings['gradient_accumulation_size'] != 0:
|
|
settings['gradient_accumulation_size'] -= settings['batch_size'] % settings['gradient_accumulation_size']
|
|
if settings['gradient_accumulation_size'] == 0:
|
|
settings['gradient_accumulation_size'] = 1
|
|
|
|
messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}")
|
|
|
|
if settings['batch_size'] % settings['gpus'] != 0:
|
|
settings['batch_size'] -= settings['batch_size'] % settings['gpus']
|
|
if settings['batch_size'] == 0:
|
|
settings['batch_size'] = 1
|
|
messages.append(f"Batch size not neatly divisible by GPU count, adjusting batch size to: {settings['batch_size']}")
|
|
|
|
|
|
def get_device_batch_size( vram ):
|
|
DEVICE_BATCH_SIZE_MAP = [
|
|
(32, 64), # based on my two 6800XTs, I can only really safely get a ratio of 156:2 = 78
|
|
(16, 8), # based on an A4000, I can do a ratio of 512:64 = 8:1
|
|
(8, 4), # interpolated
|
|
(6, 2), # based on my 2060, it only really lets me have a batch ratio of 2:1
|
|
]
|
|
for k, v in DEVICE_BATCH_SIZE_MAP:
|
|
if vram > (k-1):
|
|
return v
|
|
return 1
|
|
|
|
if settings['gpus'] > get_device_count():
|
|
settings['gpus'] = get_device_count()
|
|
messages.append(f"GPU count exceeds defacto GPU count, clamping to: {settings['gpus']}")
|
|
|
|
if settings['gpus'] <= 1:
|
|
settings['gpus'] = 1
|
|
else:
|
|
messages.append(f"! EXPERIMENTAL ! Multi-GPU training is extremely particular, expect issues.")
|
|
|
|
# assuming you have equal GPUs
|
|
vram = get_device_vram() * settings['gpus']
|
|
batch_ratio = int(settings['batch_size'] / settings['gradient_accumulation_size'])
|
|
batch_cap = get_device_batch_size(vram)
|
|
|
|
if batch_ratio > batch_cap:
|
|
settings['gradient_accumulation_size'] = int(settings['batch_size'] / batch_cap)
|
|
messages.append(f"Batch ratio ({batch_ratio}) is expected to exceed your VRAM capacity ({'{:.3f}'.format(vram)}GB, suggested {batch_cap} batch size cap), adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}")
|
|
|
|
iterations = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
|
|
|
|
if settings['epochs'] < settings['save_rate']:
|
|
settings['save_rate'] = settings['epochs']
|
|
messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {settings['save_rate']}")
|
|
|
|
if settings['epochs'] < settings['validation_rate']:
|
|
settings['validation_rate'] = settings['epochs']
|
|
messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {settings['validation_rate']}")
|
|
|
|
if settings['resume_state'] and not os.path.exists(settings['resume_state']):
|
|
settings['resume_state'] = None
|
|
messages.append("Resume path specified, but does not exist. Disabling...")
|
|
|
|
if settings['bitsandbytes']:
|
|
messages.append("! EXPERIMENTAL ! BitsAndBytes requested.")
|
|
|
|
if settings['half_p']:
|
|
if settings['bitsandbytes']:
|
|
settings['half_p'] = False
|
|
messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...")
|
|
else:
|
|
messages.append("! EXPERIMENTAL ! Half Precision requested.")
|
|
if not os.path.exists(get_halfp_model_path()):
|
|
convert_to_halfp()
|
|
|
|
messages.append(f"For {settings['epochs']} epochs with {lines} lines in batches of {settings['batch_size']}, iterating for {iterations} steps ({int(iterations / settings['epochs'])} steps per epoch)")
|
|
|
|
return settings, messages
|
|
|
|
def save_training_settings( **kwargs ):
|
|
messages = []
|
|
settings = {}
|
|
settings.update(kwargs)
|
|
|
|
outjson = f'./training/{settings["voice"]}/train.json'
|
|
with open(outjson, 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(settings, indent='\t') )
|
|
|
|
settings['dataset_path'] = f"./training/{settings['voice']}/train.txt"
|
|
settings['validation_path'] = f"./training/{settings['voice']}/validation.txt"
|
|
|
|
with open(settings['dataset_path'], 'r', encoding="utf-8") as f:
|
|
lines = len(f.readlines())
|
|
|
|
if not settings['source_model'] or settings['source_model'] == "auto":
|
|
settings['source_model'] = f"./models/tortoise/autoregressive{'_half' if settings['half_p'] else ''}.pth"
|
|
|
|
if settings['half_p']:
|
|
if not os.path.exists(get_halfp_model_path()):
|
|
convert_to_halfp()
|
|
|
|
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
|
|
messages.append(f"For {settings['epochs']} epochs with {lines} lines, iterating for {settings['iterations']} steps")
|
|
|
|
iterations_per_epoch = settings['iterations'] / settings['epochs']
|
|
|
|
settings['save_rate'] = int(settings['save_rate'] * iterations_per_epoch)
|
|
settings['validation_rate'] = int(settings['validation_rate'] * iterations_per_epoch)
|
|
|
|
iterations_per_epoch = int(iterations_per_epoch)
|
|
|
|
if settings['save_rate'] < 1:
|
|
settings['save_rate'] = 1
|
|
if settings['validation_rate'] < 1:
|
|
settings['validation_rate'] = 1
|
|
|
|
settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size'])
|
|
|
|
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
|
|
if settings['iterations'] % settings['save_rate'] != 0:
|
|
adjustment = int(settings['iterations'] / settings['save_rate']) * settings['save_rate']
|
|
messages.append(f"Iteration rate is not evenly divisible by save rate, adjusting: {settings['iterations']} => {adjustment}")
|
|
settings['iterations'] = adjustment
|
|
|
|
if not os.path.exists(settings['validation_path']):
|
|
settings['validation_enabled'] = False
|
|
messages.append("Validation not found, disabling validation...")
|
|
elif settings['validation_batch_size'] == 0:
|
|
settings['validation_enabled'] = False
|
|
messages.append("Validation batch size == 0, disabling validation...")
|
|
else:
|
|
settings['validation_enabled'] = True
|
|
with open(settings['validation_path'], 'r', encoding="utf-8") as f:
|
|
validation_lines = len(f.readlines())
|
|
|
|
if validation_lines < settings['validation_batch_size']:
|
|
settings['validation_batch_size'] = validation_lines
|
|
messages.append(f"Batch size exceeds validation dataset size, clamping validation batch size to {validation_lines}")
|
|
|
|
|
|
if settings['gpus'] > get_device_count():
|
|
settings['gpus'] = get_device_count()
|
|
|
|
# what an utter mistake this was
|
|
settings['optimizer'] = 'adamw' # if settings['gpus'] == 1 else 'adamw_zero'
|
|
|
|
if 'learning_rate_scheme' not in settings or settings['learning_rate_scheme'] not in LEARNING_RATE_SCHEMES:
|
|
settings['learning_rate_scheme'] = "Multistep"
|
|
|
|
settings['learning_rate_scheme'] = LEARNING_RATE_SCHEMES[settings['learning_rate_scheme']]
|
|
|
|
learning_rate_schema = [f"default_lr_scheme: {settings['learning_rate_scheme']}"]
|
|
if settings['learning_rate_scheme'] == "MultiStepLR":
|
|
if not settings['learning_rate_schedule']:
|
|
settings['learning_rate_schedule'] = LEARNING_RATE_SCHEDULE
|
|
elif isinstance(settings['learning_rate_schedule'],str):
|
|
settings['learning_rate_schedule'] = json.loads(settings['learning_rate_schedule'])
|
|
|
|
settings['learning_rate_schedule'] = schedule_learning_rate( iterations_per_epoch, settings['learning_rate_schedule'] )
|
|
|
|
learning_rate_schema.append(f" gen_lr_steps: {settings['learning_rate_schedule']}")
|
|
learning_rate_schema.append(f" lr_gamma: 0.5")
|
|
elif settings['learning_rate_scheme'] == "CosineAnnealingLR_Restart":
|
|
epochs = settings['epochs']
|
|
restarts = settings['learning_rate_restarts']
|
|
restart_period = int(epochs / restarts)
|
|
|
|
if 'learning_rate_warmup' not in settings:
|
|
settings['learning_rate_warmup'] = 0
|
|
if 'learning_rate_min' not in settings:
|
|
settings['learning_rate_min'] = 1e-08
|
|
|
|
if 'learning_rate_period' not in settings:
|
|
settings['learning_rate_period'] = [ iterations_per_epoch * restart_period for x in range(epochs) ]
|
|
|
|
settings['learning_rate_restarts'] = [ iterations_per_epoch * (x+1) * restart_period for x in range(restarts) ] # [52, 104, 156, 208]
|
|
|
|
if 'learning_rate_restart_weights' not in settings:
|
|
settings['learning_rate_restart_weights'] = [ ( restarts - x - 1 ) / restarts for x in range(restarts) ] # [.75, .5, .25, .125]
|
|
settings['learning_rate_restart_weights'][-1] = settings['learning_rate_restart_weights'][-2] * 0.5
|
|
|
|
learning_rate_schema.append(f" T_period: {settings['learning_rate_period']}")
|
|
learning_rate_schema.append(f" warmup: {settings['learning_rate_warmup']}")
|
|
learning_rate_schema.append(f" eta_min: !!float {settings['learning_rate_min']}")
|
|
learning_rate_schema.append(f" restarts: {settings['learning_rate_restarts']}")
|
|
learning_rate_schema.append(f" restart_weights: {settings['learning_rate_restart_weights']}")
|
|
settings['learning_rate_scheme'] = "\n".join(learning_rate_schema)
|
|
|
|
if settings['resume_state']:
|
|
settings['source_model'] = f"# pretrain_model_gpt: '{settings['source_model']}'"
|
|
settings['resume_state'] = f"resume_state: '{settings['resume_state']}'"
|
|
else:
|
|
settings['source_model'] = f"pretrain_model_gpt: '{settings['source_model']}'"
|
|
settings['resume_state'] = f"# resume_state: '{settings['resume_state']}'"
|
|
|
|
with open(f'./models/.template.yaml', 'r', encoding="utf-8") as f:
|
|
yaml = f.read()
|
|
|
|
# i could just load and edit the YAML directly, but this is easier, as I don't need to bother with path traversals
|
|
for k in settings:
|
|
if settings[k] is None:
|
|
continue
|
|
yaml = yaml.replace(f"${{{k}}}", str(settings[k]))
|
|
|
|
outyaml = f'./training/{settings["voice"]}/train.yaml'
|
|
with open(outyaml, 'w', encoding="utf-8") as f:
|
|
f.write(yaml)
|
|
|
|
|
|
messages.append(f"Saved training output to: {outyaml}")
|
|
return settings, messages
|
|
|
|
def import_voices(files, saveAs=None, progress=None):
|
|
global args
|
|
|
|
if not isinstance(files, list):
|
|
files = [files]
|
|
|
|
for file in enumerate_progress(files, desc="Importing voice files", progress=progress):
|
|
j, latents = read_generate_settings(file, read_latents=True)
|
|
|
|
if j is not None and saveAs is None:
|
|
saveAs = j['voice']
|
|
if saveAs is None or saveAs == "":
|
|
raise Exception("Specify a voice name")
|
|
|
|
outdir = f'{get_voice_dir()}/{saveAs}/'
|
|
os.makedirs(outdir, exist_ok=True)
|
|
|
|
if latents:
|
|
print(f"Importing latents to {latents}")
|
|
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
|
|
f.write(latents)
|
|
latents = f'{outdir}/cond_latents.pth'
|
|
print(f"Imported latents to {latents}")
|
|
else:
|
|
filename = file.name
|
|
if filename[-4:] != ".wav":
|
|
raise Exception("Please convert to a WAV first")
|
|
|
|
path = f"{outdir}/{os.path.basename(filename)}"
|
|
print(f"Importing voice to {path}")
|
|
|
|
waveform, sampling_rate = torchaudio.load(filename)
|
|
|
|
if args.voice_fixer:
|
|
if not voicefixer:
|
|
load_voicefixer()
|
|
|
|
# resample to best bandwidth since voicefixer will do it anyways through librosa
|
|
if sampling_rate != 44100:
|
|
print(f"Resampling imported voice sample: {path}")
|
|
resampler = torchaudio.transforms.Resample(
|
|
sampling_rate,
|
|
44100,
|
|
lowpass_filter_width=16,
|
|
rolloff=0.85,
|
|
resampling_method="kaiser_window",
|
|
beta=8.555504641634386,
|
|
)
|
|
waveform = resampler(waveform)
|
|
sampling_rate = 44100
|
|
|
|
torchaudio.save(path, waveform, sampling_rate)
|
|
|
|
print(f"Running 'voicefixer' on voice sample: {path}")
|
|
voicefixer.restore(
|
|
input = path,
|
|
output = path,
|
|
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
|
|
#mode=mode,
|
|
)
|
|
else:
|
|
torchaudio.save(path, waveform, sampling_rate)
|
|
|
|
print(f"Imported voice to {path}")
|
|
|
|
def get_voice_list(dir=get_voice_dir(), append_defaults=False):
|
|
defaults = [ "random", "microphone" ]
|
|
os.makedirs(dir, exist_ok=True)
|
|
res = sorted([d for d in os.listdir(dir) if d not in defaults and os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ])
|
|
if append_defaults:
|
|
res = res + defaults
|
|
return res
|
|
|
|
def get_autoregressive_models(dir="./models/finetunes/", prefixed=False):
|
|
os.makedirs(dir, exist_ok=True)
|
|
base = [get_model_path('autoregressive.pth')]
|
|
halfp = get_halfp_model_path()
|
|
if os.path.exists(halfp):
|
|
base.append(halfp)
|
|
|
|
additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
|
|
found = []
|
|
for training in os.listdir(f'./training/'):
|
|
if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/finetune/') or not os.path.isdir(f'./training/{training}/finetune/models/'):
|
|
continue
|
|
models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/finetune/models/') if d[-8:] == "_gpt.pth" ])
|
|
found = found + [ f'./training/{training}/finetune/models/{d}_gpt.pth' for d in models ]
|
|
|
|
if len(found) > 0 or len(additionals) > 0:
|
|
base = ["auto"] + base
|
|
|
|
res = base + additionals + found
|
|
|
|
if prefixed:
|
|
for i in range(len(res)):
|
|
path = res[i]
|
|
hash = hash_file(path)
|
|
shorthash = hash[:8]
|
|
|
|
res[i] = f'[{shorthash}] {path}'
|
|
|
|
return res
|
|
|
|
def get_dataset_list(dir="./training/"):
|
|
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.txt" in os.listdir(os.path.join(dir, d)) ])
|
|
|
|
def get_training_list(dir="./training/"):
|
|
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
|
|
|
|
def pad(num, zeroes):
|
|
return str(num).zfill(zeroes+1)
|
|
|
|
def curl(url):
|
|
try:
|
|
req = urllib.request.Request(url, headers={'User-Agent': 'Python'})
|
|
conn = urllib.request.urlopen(req)
|
|
data = conn.read()
|
|
data = data.decode()
|
|
data = json.loads(data)
|
|
conn.close()
|
|
return data
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
def check_for_updates( dir = None ):
|
|
if dir is None:
|
|
check_for_updates("./.git/")
|
|
check_for_updates("./.git/modules/dlas/")
|
|
check_for_updates("./.git/modules/tortoise-tts/")
|
|
return
|
|
|
|
git_dir = dir
|
|
if not os.path.isfile(f'{git_dir}/FETCH_HEAD'):
|
|
print(f"Cannot check for updates for {dir}: not from a git repo")
|
|
return False
|
|
|
|
with open(f'{git_dir}/FETCH_HEAD', 'r', encoding="utf-8") as f:
|
|
head = f.read()
|
|
|
|
match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head)
|
|
if match is None or len(match) == 0:
|
|
print(f"Cannot check for updates for {dir}: cannot parse FETCH_HEAD")
|
|
return False
|
|
|
|
match = match[0]
|
|
|
|
local = match[0]
|
|
host = match[1]
|
|
owner = match[2]
|
|
repo = match[3]
|
|
|
|
res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances
|
|
|
|
if res is None or len(res) == 0:
|
|
print(f"Cannot check for updates for {dir}: cannot fetch from remote")
|
|
return False
|
|
|
|
remote = res[0]["commit"]["id"]
|
|
|
|
if remote != local:
|
|
print(f"New version found for {dir}: {local[:8]} => {remote[:8]}")
|
|
return True
|
|
|
|
return False
|
|
|
|
def enumerate_progress(iterable, desc=None, progress=None, verbose=None):
|
|
if verbose and desc is not None:
|
|
print(desc)
|
|
|
|
if progress is None:
|
|
return tqdm(iterable, disable=not verbose)
|
|
return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
|
|
|
|
def notify_progress(message, progress=None, verbose=True):
|
|
if verbose:
|
|
print(message)
|
|
|
|
if progress is None:
|
|
return
|
|
|
|
progress(0, desc=message)
|
|
|
|
def get_args():
|
|
global args
|
|
return args
|
|
|
|
def setup_args():
|
|
global args
|
|
|
|
default_arguments = {
|
|
'share': False,
|
|
'listen': None,
|
|
'check-for-updates': False,
|
|
'models-from-local-only': False,
|
|
'low-vram': False,
|
|
'sample-batch-size': None,
|
|
'embed-output-metadata': True,
|
|
'latents-lean-and-mean': True,
|
|
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
|
|
'voice-fixer-use-cuda': True,
|
|
'force-cpu-for-conditioning-latents': False,
|
|
'defer-tts-load': False,
|
|
'device-override': None,
|
|
'prune-nonfinal-outputs': True,
|
|
'vocoder-model': VOCODERS[-1],
|
|
'concurrency-count': 2,
|
|
'autocalculate-voice-chunk-duration-size': 0,
|
|
'output-sample-rate': 44100,
|
|
'output-volume': 1,
|
|
|
|
'autoregressive-model': None,
|
|
'whisper-backend': 'openai/whisper',
|
|
'whisper-model': "base",
|
|
|
|
'training-default-halfp': False,
|
|
'training-default-bnb': True,
|
|
}
|
|
|
|
if os.path.isfile('./config/exec.json'):
|
|
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
|
|
try:
|
|
overrides = json.load(f)
|
|
for k in overrides:
|
|
default_arguments[k] = overrides[k]
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
|
|
parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on")
|
|
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
|
|
parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models")
|
|
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
|
|
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
|
|
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
|
|
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
|
|
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
|
|
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
|
|
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
|
|
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
|
|
parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use")
|
|
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
|
|
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
|
|
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
|
|
parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)")
|
|
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
|
|
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
|
|
|
|
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
|
|
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp)")
|
|
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
|
|
|
|
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
|
|
parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb")
|
|
|
|
parser.add_argument("--os", default="unix", help="Specifies which OS, easily")
|
|
args = parser.parse_args()
|
|
|
|
args.embed_output_metadata = not args.no_embed_output_metadata
|
|
|
|
if not args.device_override:
|
|
set_device_name(args.device_override)
|
|
|
|
|
|
args.listen_host = None
|
|
args.listen_port = None
|
|
args.listen_path = None
|
|
if args.listen:
|
|
try:
|
|
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
|
|
|
|
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
|
|
args.listen_port = match[1] if match[1] != "" else None
|
|
args.listen_path = match[2] if match[2] != "" else "/"
|
|
except Exception as e:
|
|
pass
|
|
|
|
if args.listen_port is not None:
|
|
args.listen_port = int(args.listen_port)
|
|
if args.listen_port == 0:
|
|
args.listen_port = None
|
|
|
|
return args
|
|
|
|
def update_args( **kwargs ):
|
|
global args
|
|
|
|
settings = {}
|
|
settings.update(kwargs)
|
|
|
|
args.listen = settings['listen']
|
|
args.share = settings['share']
|
|
args.check_for_updates = settings['check_for_updates']
|
|
args.models_from_local_only = settings['models_from_local_only']
|
|
args.low_vram = settings['low_vram']
|
|
args.force_cpu_for_conditioning_latents = settings['force_cpu_for_conditioning_latents']
|
|
args.defer_tts_load = settings['defer_tts_load']
|
|
args.prune_nonfinal_outputs = settings['prune_nonfinal_outputs']
|
|
args.device_override = settings['device_override']
|
|
args.sample_batch_size = settings['sample_batch_size']
|
|
args.embed_output_metadata = settings['embed_output_metadata']
|
|
args.latents_lean_and_mean = settings['latents_lean_and_mean']
|
|
args.voice_fixer = settings['voice_fixer']
|
|
args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda']
|
|
args.concurrency_count = settings['concurrency_count']
|
|
args.output_sample_rate = 44000
|
|
args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size']
|
|
args.output_volume = settings['output_volume']
|
|
|
|
args.autoregressive_model = settings['autoregressive_model']
|
|
args.vocoder_model = settings['vocoder_model']
|
|
args.whisper_backend = settings['whisper_backend']
|
|
args.whisper_model = settings['whisper_model']
|
|
|
|
args.training_default_halfp = settings['training_default_halfp']
|
|
args.training_default_bnb = settings['training_default_bnb']
|
|
|
|
save_args_settings()
|
|
|
|
def save_args_settings():
|
|
global args
|
|
settings = {
|
|
'listen': None if not args.listen else args.listen,
|
|
'share': args.share,
|
|
'low-vram':args.low_vram,
|
|
'check-for-updates':args.check_for_updates,
|
|
'models-from-local-only':args.models_from_local_only,
|
|
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
|
|
'defer-tts-load': args.defer_tts_load,
|
|
'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
|
|
'device-override': args.device_override,
|
|
'sample-batch-size': args.sample_batch_size,
|
|
'embed-output-metadata': args.embed_output_metadata,
|
|
'latents-lean-and-mean': args.latents_lean_and_mean,
|
|
'voice-fixer': args.voice_fixer,
|
|
'voice-fixer-use-cuda': args.voice_fixer_use_cuda,
|
|
'concurrency-count': args.concurrency_count,
|
|
'output-sample-rate': args.output_sample_rate,
|
|
'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size,
|
|
'output-volume': args.output_volume,
|
|
|
|
'autoregressive-model': args.autoregressive_model,
|
|
'vocoder-model': args.vocoder_model,
|
|
'whisper-backend': args.whisper_backend,
|
|
'whisper-model': args.whisper_model,
|
|
|
|
'training-default-halfp': args.training_default_halfp,
|
|
'training-default-bnb': args.training_default_bnb,
|
|
}
|
|
|
|
os.makedirs('./config/', exist_ok=True)
|
|
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(settings, indent='\t') )
|
|
|
|
# super kludgy )`;
|
|
def import_generate_settings(file = None):
|
|
if not file:
|
|
file = "./config/generate.json"
|
|
|
|
res = {
|
|
'text': None,
|
|
'delimiter': None,
|
|
'emotion': None,
|
|
'prompt': None,
|
|
'voice': None,
|
|
'mic_audio': None,
|
|
'voice_latents_chunks': None,
|
|
'candidates': None,
|
|
'seed': None,
|
|
'num_autoregressive_samples': 16,
|
|
'diffusion_iterations': 30,
|
|
'temperature': 0.8,
|
|
'diffusion_sampler': "DDIM",
|
|
'breathing_room': 8 ,
|
|
'cvvp_weight': 0.0,
|
|
'top_p': 0.8,
|
|
'diffusion_temperature': 1.0,
|
|
'length_penalty': 1.0,
|
|
'repetition_penalty': 2.0,
|
|
'cond_free_k': 2.0,
|
|
'experimentals': None,
|
|
}
|
|
|
|
settings, _ = read_generate_settings(file, read_latents=False)
|
|
|
|
if settings is not None:
|
|
res.update(settings)
|
|
|
|
return res
|
|
|
|
def reset_generation_settings():
|
|
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps({}, indent='\t') )
|
|
return import_generate_settings()
|
|
|
|
def read_generate_settings(file, read_latents=True):
|
|
j = None
|
|
latents = None
|
|
|
|
if isinstance(file, list) and len(file) == 1:
|
|
file = file[0]
|
|
|
|
try:
|
|
if file is not None:
|
|
if hasattr(file, 'name'):
|
|
file = file.name
|
|
|
|
if file[-4:] == ".wav":
|
|
metadata = music_tag.load_file(file)
|
|
if 'lyrics' in metadata:
|
|
j = json.loads(str(metadata['lyrics']))
|
|
elif file[-5:] == ".json":
|
|
with open(file, 'r') as f:
|
|
j = json.load(f)
|
|
except Exception as e:
|
|
pass
|
|
|
|
if j is not None:
|
|
if 'latents' in j:
|
|
if read_latents:
|
|
latents = base64.b64decode(j['latents'])
|
|
del j['latents']
|
|
|
|
|
|
if "time" in j:
|
|
j["time"] = "{:.3f}".format(j["time"])
|
|
|
|
|
|
|
|
return (
|
|
j,
|
|
latents,
|
|
)
|
|
|
|
def version_check_tts( min_version ):
|
|
global tts
|
|
if not tts:
|
|
raise Exception("TTS is not initialized")
|
|
|
|
if not hasattr(tts, 'version'):
|
|
return False
|
|
|
|
if min_version[0] > tts.version[0]:
|
|
return True
|
|
if min_version[1] > tts.version[1]:
|
|
return True
|
|
if min_version[2] >= tts.version[2]:
|
|
return True
|
|
return False
|
|
|
|
def load_tts( restart=False, autoregressive_model=None ):
|
|
global args
|
|
global tts
|
|
|
|
if restart:
|
|
unload_tts()
|
|
|
|
if autoregressive_model:
|
|
args.autoregressive_model = autoregressive_model
|
|
else:
|
|
autoregressive_model = args.autoregressive_model
|
|
|
|
if autoregressive_model == "auto":
|
|
autoregressive_model = deduce_autoregressive_model()
|
|
|
|
print(f"Loading TorToiSe... (AR: {autoregressive_model}, vocoder: {args.vocoder_model})")
|
|
|
|
if get_device_name() == "cpu":
|
|
print("!!!! WARNING !!!! No GPU available in PyTorch. You may need to reinstall PyTorch.")
|
|
|
|
tts_loading = True
|
|
try:
|
|
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, vocoder_model=args.vocoder_model)
|
|
except Exception as e:
|
|
tts = TextToSpeech(minor_optimizations=not args.low_vram)
|
|
load_autoregressive_model(autoregressive_model)
|
|
|
|
tts_loading = False
|
|
|
|
get_model_path('dvae.pth')
|
|
print("Loaded TorToiSe, ready for generation.")
|
|
return tts
|
|
|
|
setup_tortoise = load_tts
|
|
|
|
def unload_tts():
|
|
global tts
|
|
|
|
if tts:
|
|
del tts
|
|
tts = None
|
|
print("Unloaded TTS")
|
|
do_gc()
|
|
|
|
def reload_tts( model=None ):
|
|
load_tts( restart=True, model=model )
|
|
|
|
def get_current_voice():
|
|
global current_voice
|
|
if current_voice:
|
|
return current_voice
|
|
|
|
settings, _ = read_generate_settings("./config/generate.json", read_latents=False)
|
|
|
|
if settings and "voice" in settings['voice']:
|
|
return settings["voice"]
|
|
|
|
return None
|
|
|
|
def deduce_autoregressive_model(voice=None):
|
|
if not voice:
|
|
voice = get_current_voice()
|
|
|
|
if voice:
|
|
if os.path.exists(f'./models/finetunes/{voice}.pth'):
|
|
return f'./models/finetunes/{voice}.pth'
|
|
|
|
dir = f'./training/{voice}/finetune/models/'
|
|
if os.path.isdir(dir):
|
|
counts = sorted([ int(d[:-8]) for d in os.listdir(dir) if d[-8:] == "_gpt.pth" ])
|
|
names = [ f'{dir}/{d}_gpt.pth' for d in counts ]
|
|
if len(names) > 0:
|
|
return names[-1]
|
|
|
|
if args.autoregressive_model != "auto":
|
|
return args.autoregressive_model
|
|
|
|
return get_model_path('autoregressive.pth')
|
|
|
|
def update_autoregressive_model(autoregressive_model_path):
|
|
match = re.findall(r'^\[[a-fA-F0-9]{8}\] (.+?)$', autoregressive_model_path)
|
|
if match:
|
|
autoregressive_model_path = match[0]
|
|
|
|
if not autoregressive_model_path or not os.path.exists(autoregressive_model_path):
|
|
print(f"Invalid model: {autoregressive_model_path}")
|
|
return
|
|
|
|
args.autoregressive_model = autoregressive_model_path
|
|
save_args_settings()
|
|
print(f'Stored autoregressive model to settings: {autoregressive_model_path}')
|
|
|
|
global tts
|
|
if not tts:
|
|
if tts_loading:
|
|
raise Exception("TTS is still initializing...")
|
|
return
|
|
|
|
if hasattr(tts, "loading") and tts.loading:
|
|
raise Exception("TTS is still initializing...")
|
|
|
|
if autoregressive_model_path == "auto":
|
|
autoregressive_model_path = deduce_autoregressive_model()
|
|
|
|
if autoregressive_model_path == tts.autoregressive_model_path:
|
|
return
|
|
|
|
tts.load_autoregressive_model(autoregressive_model_path)
|
|
|
|
do_gc()
|
|
|
|
return autoregressive_model_path
|
|
|
|
def update_vocoder_model(vocoder_model):
|
|
args.vocoder_model = vocoder_model
|
|
save_args_settings()
|
|
print(f'Stored vocoder model to settings: {vocoder_model}')
|
|
|
|
global tts
|
|
if not tts:
|
|
if tts_loading:
|
|
raise Exception("TTS is still initializing...")
|
|
return
|
|
|
|
if hasattr(tts, "loading") and tts.loading:
|
|
raise Exception("TTS is still initializing...")
|
|
|
|
print(f"Loading model: {vocoder_model}")
|
|
tts.load_vocoder_model(vocoder_model)
|
|
print(f"Loaded model: {tts.vocoder_model}")
|
|
|
|
do_gc()
|
|
|
|
return vocoder_model
|
|
|
|
def load_voicefixer(restart=False):
|
|
global voicefixer
|
|
|
|
if restart:
|
|
unload_voicefixer()
|
|
|
|
try:
|
|
print("Loading Voicefixer")
|
|
from voicefixer import VoiceFixer
|
|
voicefixer = VoiceFixer()
|
|
print("Loaded Voicefixer")
|
|
except Exception as e:
|
|
print(f"Error occurred while tring to initialize voicefixer: {e}")
|
|
if voicefixer:
|
|
del voicefixer
|
|
voicefixer = None
|
|
|
|
def unload_voicefixer():
|
|
global voicefixer
|
|
|
|
if voicefixer:
|
|
del voicefixer
|
|
voicefixer = None
|
|
print("Unloaded Voicefixer")
|
|
|
|
do_gc()
|
|
|
|
def load_whisper_model(language=None, model_name=None, progress=None):
|
|
global whisper_model
|
|
|
|
if model_name == "m-bain/whisperx":
|
|
print("WhisperX has been removed. Reverting to openai/whisper. Apologies for the inconvenience.")
|
|
model_name = "openai/whisper"
|
|
|
|
if args.whisper_backend not in WHISPER_BACKENDS:
|
|
raise Exception(f"unavailable backend: {args.whisper_backend}")
|
|
|
|
if not model_name:
|
|
model_name = args.whisper_model
|
|
else:
|
|
args.whisper_model = model_name
|
|
save_args_settings()
|
|
|
|
if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS:
|
|
model_name = f'{model_name}.{language}'
|
|
print(f"Loading specialized model for language: {language}")
|
|
|
|
notify_progress(f"Loading Whisper model: {model_name}", progress)
|
|
|
|
if args.whisper_backend == "openai/whisper":
|
|
import whisper
|
|
try:
|
|
#is it possible for model to fit on vram but go oom later on while executing on data?
|
|
whisper_model = whisper.load_model(model_name)
|
|
except:
|
|
print("Out of VRAM memory. falling back to loading Whisper on CPU.")
|
|
whisper_model = whisper.load_model(model_name, device="cpu")
|
|
elif args.whisper_backend == "lightmare/whispercpp":
|
|
from whispercpp import Whisper
|
|
if not language:
|
|
language = 'auto'
|
|
|
|
b_lang = language.encode('ascii')
|
|
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
|
|
|
|
print("Loaded Whisper model")
|
|
|
|
def unload_whisper():
|
|
global whisper_model
|
|
|
|
if whisper_model:
|
|
del whisper_model
|
|
whisper_model = None
|
|
print("Unloaded Whisper")
|
|
|
|
do_gc() |