reactphysics3d/src/engine/ContactSolver.cpp

902 lines
45 KiB
C++
Raw Normal View History

2013-02-19 22:16:20 +00:00
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
2013-02-19 22:16:20 +00:00
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "ContactSolver.h"
#include "DynamicsWorld.h"
#include "../body/RigidBody.h"
#include "Profiler.h"
#include <limits>
2013-02-19 22:16:20 +00:00
using namespace reactphysics3d;
using namespace std;
// Constants initialization
const decimal ContactSolver::BETA = decimal(0.2);
const decimal ContactSolver::BETA_SPLIT_IMPULSE = decimal(0.2);
const decimal ContactSolver::SLOP = decimal(0.01);
// Constructor
ContactSolver::ContactSolver(std::vector<ContactManifold*>& contactManifolds,
std::vector<Vector3>& constrainedLinearVelocities,
std::vector<Vector3>& constrainedAngularVelocities,
const std::map<RigidBody*, uint>& mapBodyToVelocityIndex)
:mContactManifolds(contactManifolds),
mSplitLinearVelocities(NULL), mSplitAngularVelocities(NULL),
mContactConstraints(NULL),
2013-05-02 20:41:57 +00:00
mLinearVelocities(constrainedLinearVelocities),
mAngularVelocities(constrainedAngularVelocities),
mMapBodyToConstrainedVelocityIndex(mapBodyToVelocityIndex),
mIsWarmStartingActive(true), mIsSplitImpulseActive(true),
mIsSolveFrictionAtContactManifoldCenterActive(true) {
2013-02-19 22:16:20 +00:00
}
// Destructor
ContactSolver::~ContactSolver() {
}
// Initialize the constraint solver
void ContactSolver::initialize(decimal dt) {
PROFILE("ContactSolver::initialize()");
// Set the current time step
mTimeStep = dt;
2013-02-19 22:16:20 +00:00
// TODO : Use better memory allocation here
mContactConstraints = new ContactManifoldSolver[mContactManifolds.size()];
2013-02-19 22:16:20 +00:00
mNbContactManifolds = 0;
2013-02-19 22:16:20 +00:00
// For each contact manifold of the world
vector<ContactManifold*>::iterator it;
for (it = mContactManifolds.begin(); it != mContactManifolds.end(); ++it) {
2013-02-19 22:16:20 +00:00
ContactManifold* externalManifold = *it;
2013-02-19 22:16:20 +00:00
ContactManifoldSolver& internalManifold = mContactConstraints[mNbContactManifolds];
2013-02-19 22:16:20 +00:00
assert(externalManifold->getNbContactPoints() > 0);
2013-02-19 22:16:20 +00:00
// Get the two bodies of the contact
RigidBody* body1 = externalManifold->getContactPoint(0)->getBody1();
RigidBody* body2 = externalManifold->getContactPoint(0)->getBody2();
2013-02-19 22:16:20 +00:00
// Add the two bodies of the constraint in the constraintBodies list
mConstraintBodies.insert(body1);
mConstraintBodies.insert(body2);
// Get the position of the two bodies
Vector3 x1 = body1->getTransform().getPosition();
Vector3 x2 = body2->getTransform().getPosition();
// Initialize the internal contact manifold structure using the external
// contact manifold
internalManifold.indexBody1 = mMapBodyToConstrainedVelocityIndex.find(body1)->second;
internalManifold.indexBody2 = mMapBodyToConstrainedVelocityIndex.find(body2)->second;
internalManifold.inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
internalManifold.inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
internalManifold.isBody1Moving = body1->getIsMotionEnabled();
internalManifold.isBody2Moving = body2->getIsMotionEnabled();
internalManifold.massInverseBody1 = body1->getMassInverse();
internalManifold.massInverseBody2 = body2->getMassInverse();
internalManifold.nbContacts = externalManifold->getNbContactPoints();
internalManifold.restitutionFactor = computeMixedRestitutionFactor(body1, body2);
internalManifold.frictionCoefficient = computeMixedFrictionCoefficient(body1, body2);
internalManifold.externalContactManifold = externalManifold;
2013-02-19 22:16:20 +00:00
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
internalManifold.frictionPointBody1 = Vector3(0.0, 0.0, 0.0);
internalManifold.frictionPointBody2 = Vector3(0.0, 0.0, 0.0);
2013-02-19 22:16:20 +00:00
}
// For each contact point of the contact manifold
for (uint c=0; c<externalManifold->getNbContactPoints(); c++) {
2013-02-19 22:16:20 +00:00
ContactPointSolver& contactPoint = internalManifold.contacts[c];
2013-02-19 22:16:20 +00:00
// Get a contact point
ContactPoint* externalContact = externalManifold->getContactPoint(c);
2013-02-19 22:16:20 +00:00
// Get the contact point on the two bodies
Vector3 p1 = externalContact->getWorldPointOnBody1();
Vector3 p2 = externalContact->getWorldPointOnBody2();
contactPoint.externalContact = externalContact;
2013-02-19 22:16:20 +00:00
contactPoint.normal = externalContact->getNormal();
contactPoint.r1 = p1 - x1;
contactPoint.r2 = p2 - x2;
contactPoint.penetrationDepth = externalContact->getPenetrationDepth();
contactPoint.isRestingContact = externalContact->getIsRestingContact();
externalContact->setIsRestingContact(true);
contactPoint.oldFrictionVector1 = externalContact->getFrictionVector1();
contactPoint.oldFrictionVector2 = externalContact->getFrictionVector2();
contactPoint.penetrationImpulse = 0.0;
contactPoint.friction1Impulse = 0.0;
contactPoint.friction2Impulse = 0.0;
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
internalManifold.frictionPointBody1 += p1;
internalManifold.frictionPointBody2 += p2;
2013-02-19 22:16:20 +00:00
}
}
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
internalManifold.frictionPointBody1 /=static_cast<decimal>(internalManifold.nbContacts);
internalManifold.frictionPointBody2 /=static_cast<decimal>(internalManifold.nbContacts);
internalManifold.r1Friction = internalManifold.frictionPointBody1 - x1;
internalManifold.r2Friction = internalManifold.frictionPointBody2 - x2;
internalManifold.oldFrictionVector1 = externalManifold->getFrictionVector1();
internalManifold.oldFrictionVector2 = externalManifold->getFrictionVector2();
2013-02-19 22:16:20 +00:00
// If warm starting is active
if (mIsWarmStartingActive) {
// Initialize the accumulated impulses with the previous step accumulated impulses
internalManifold.friction1Impulse = externalManifold->getFrictionImpulse1();
internalManifold.friction2Impulse = externalManifold->getFrictionImpulse2();
internalManifold.frictionTwistImpulse = externalManifold->getFrictionTwistImpulse();
2013-02-19 22:16:20 +00:00
}
else {
// Initialize the accumulated impulses to zero
internalManifold.friction1Impulse = 0.0;
internalManifold.friction2Impulse = 0.0;
internalManifold.frictionTwistImpulse = 0.0;
2013-02-19 22:16:20 +00:00
}
}
mNbContactManifolds++;
2013-02-19 22:16:20 +00:00
}
// Allocated memory for split impulse velocities
2013-02-19 22:16:20 +00:00
// TODO : Use better memory allocation here
mSplitLinearVelocities = new Vector3[mMapBodyToConstrainedVelocityIndex.size()];
mSplitAngularVelocities = new Vector3[mMapBodyToConstrainedVelocityIndex.size()];
assert(mSplitLinearVelocities != NULL);
assert(mSplitAngularVelocities != NULL);
assert(mConstraintBodies.size() > 0);
assert(mMapBodyToConstrainedVelocityIndex.size() >= mConstraintBodies.size());
2013-05-02 20:41:57 +00:00
assert(mLinearVelocities.size() >= mConstraintBodies.size());
assert(mAngularVelocities.size() >= mConstraintBodies.size());
// Initialize the split impulse velocities
initializeSplitImpulseVelocities();
// Fill-in all the matrices needed to solve the LCP problem
initializeContactConstraints();
2013-02-19 22:16:20 +00:00
}
// Initialize the split impulse velocities
void ContactSolver::initializeSplitImpulseVelocities() {
2013-02-19 22:16:20 +00:00
// For each current body that is implied in some constraint
set<RigidBody*>::iterator it;
for (it = mConstraintBodies.begin(); it != mConstraintBodies.end(); ++it) {
RigidBody* rigidBody = *it;
assert(rigidBody);
uint bodyNumber = mMapBodyToConstrainedVelocityIndex.find(rigidBody)->second;
2013-02-19 22:16:20 +00:00
// Initialize the split impulse velocities to zero
2013-02-19 22:16:20 +00:00
mSplitLinearVelocities[bodyNumber] = Vector3(0, 0, 0);
mSplitAngularVelocities[bodyNumber] = Vector3(0, 0, 0);
}
}
// Initialize the contact constraints before solving the system
void ContactSolver::initializeContactConstraints() {
// For each contact constraint
for (uint c=0; c<mNbContactManifolds; c++) {
2013-02-19 22:16:20 +00:00
ContactManifoldSolver& manifold = mContactConstraints[c];
2013-02-19 22:16:20 +00:00
// Get the inertia tensors of both bodies
Matrix3x3& I1 = manifold.inverseInertiaTensorBody1;
Matrix3x3& I2 = manifold.inverseInertiaTensorBody2;
2013-02-19 22:16:20 +00:00
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
manifold.normal = Vector3(0.0, 0.0, 0.0);
2013-02-19 22:16:20 +00:00
}
// Get the velocities of the bodies
2013-05-02 20:41:57 +00:00
const Vector3& v1 = mLinearVelocities[manifold.indexBody1];
const Vector3& w1 = mAngularVelocities[manifold.indexBody1];
const Vector3& v2 = mLinearVelocities[manifold.indexBody2];
const Vector3& w2 = mAngularVelocities[manifold.indexBody2];
2013-02-19 22:16:20 +00:00
// For each contact point constraint
for (uint i=0; i<manifold.nbContacts; i++) {
2013-02-19 22:16:20 +00:00
ContactPointSolver& contactPoint = manifold.contacts[i];
ContactPoint* externalContact = contactPoint.externalContact;
2013-02-19 22:16:20 +00:00
// Compute the velocity difference
Vector3 deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
contactPoint.r1CrossN = contactPoint.r1.cross(contactPoint.normal);
contactPoint.r2CrossN = contactPoint.r2.cross(contactPoint.normal);
// Compute the inverse mass matrix K for the penetration constraint
2013-02-19 22:16:20 +00:00
decimal massPenetration = 0.0;
if (manifold.isBody1Moving) {
massPenetration += manifold.massInverseBody1 +
((I1 * contactPoint.r1CrossN).cross(contactPoint.r1)).dot(contactPoint.normal);
2013-02-19 22:16:20 +00:00
}
if (manifold.isBody2Moving) {
massPenetration += manifold.massInverseBody2 +
((I2 * contactPoint.r2CrossN).cross(contactPoint.r2)).dot(contactPoint.normal);
2013-02-19 22:16:20 +00:00
}
massPenetration > 0.0 ? contactPoint.inversePenetrationMass = decimal(1.0) /
massPenetration :
decimal(0.0);
2013-02-19 22:16:20 +00:00
// If we do not solve the friction constraints at the center of the contact manifold
2013-02-19 22:16:20 +00:00
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
// Compute the friction vectors
computeFrictionVectors(deltaV, contactPoint);
contactPoint.r1CrossT1 = contactPoint.r1.cross(contactPoint.frictionVector1);
contactPoint.r1CrossT2 = contactPoint.r1.cross(contactPoint.frictionVector2);
contactPoint.r2CrossT1 = contactPoint.r2.cross(contactPoint.frictionVector1);
contactPoint.r2CrossT2 = contactPoint.r2.cross(contactPoint.frictionVector2);
// Compute the inverse mass matrix K for the friction
// constraints at each contact point
2013-02-19 22:16:20 +00:00
decimal friction1Mass = 0.0;
decimal friction2Mass = 0.0;
if (manifold.isBody1Moving) {
friction1Mass += manifold.massInverseBody1 +
((I1 * contactPoint.r1CrossT1).cross(contactPoint.r1)).dot(
contactPoint.frictionVector1);
friction2Mass += manifold.massInverseBody1 +
((I1 * contactPoint.r1CrossT2).cross(contactPoint.r1)).dot(
contactPoint.frictionVector2);
2013-02-19 22:16:20 +00:00
}
if (manifold.isBody2Moving) {
friction1Mass += manifold.massInverseBody2 +
((I2 * contactPoint.r2CrossT1).cross(contactPoint.r2)).dot(
contactPoint.frictionVector1);
friction2Mass += manifold.massInverseBody2 +
((I2 * contactPoint.r2CrossT2).cross(contactPoint.r2)).dot(
contactPoint.frictionVector2);
2013-02-19 22:16:20 +00:00
}
friction1Mass > 0.0 ? contactPoint.inverseFriction1Mass = decimal(1.0) /
friction1Mass :
decimal(0.0);
friction2Mass > 0.0 ? contactPoint.inverseFriction2Mass = decimal(1.0) /
friction2Mass :
decimal(0.0);
2013-02-19 22:16:20 +00:00
}
// Compute the restitution velocity bias "b". We compute this here instead
// of inside the solve() method because we need to use the velocity difference
// at the beginning of the contact. Note that if it is a resting contact (normal
// velocity under a given threshold), we don't add a restitution velocity bias
2013-02-19 22:16:20 +00:00
contactPoint.restitutionBias = 0.0;
decimal deltaVDotN = deltaV.dot(contactPoint.normal);
if (deltaVDotN < RESTITUTION_VELOCITY_THRESHOLD) {
contactPoint.restitutionBias = manifold.restitutionFactor * deltaVDotN;
2013-02-19 22:16:20 +00:00
}
// If the warm starting of the contact solver is active
2013-02-19 22:16:20 +00:00
if (mIsWarmStartingActive) {
// Get the cached accumulated impulses from the previous step
2013-04-22 21:32:52 +00:00
contactPoint.penetrationImpulse = externalContact->getPenetrationImpulse();
contactPoint.friction1Impulse = externalContact->getFrictionImpulse1();
contactPoint.friction2Impulse = externalContact->getFrictionImpulse2();
2013-02-19 22:16:20 +00:00
}
// Initialize the split impulses to zero
contactPoint.penetrationSplitImpulse = 0.0;
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
manifold.normal += contactPoint.normal;
2013-02-19 22:16:20 +00:00
}
}
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
manifold.normal.normalize();
2013-02-19 22:16:20 +00:00
Vector3 deltaVFrictionPoint = v2 + w2.cross(manifold.r2Friction) -
v1 - w1.cross(manifold.r1Friction);
2013-02-19 22:16:20 +00:00
// Compute the friction vectors
computeFrictionVectors(deltaVFrictionPoint, manifold);
2013-02-19 22:16:20 +00:00
// Compute the inverse mass matrix K for the friction constraints at the center of
// the contact manifold
manifold.r1CrossT1 = manifold.r1Friction.cross(manifold.frictionVector1);
manifold.r1CrossT2 = manifold.r1Friction.cross(manifold.frictionVector2);
manifold.r2CrossT1 = manifold.r2Friction.cross(manifold.frictionVector1);
manifold.r2CrossT2 = manifold.r2Friction.cross(manifold.frictionVector2);
2013-02-19 22:16:20 +00:00
decimal friction1Mass = 0.0;
decimal friction2Mass = 0.0;
if (manifold.isBody1Moving) {
friction1Mass += manifold.massInverseBody1 +
((I1 * manifold.r1CrossT1).cross(manifold.r1Friction)).dot(
manifold.frictionVector1);
friction2Mass += manifold.massInverseBody1 +
((I1 * manifold.r1CrossT2).cross(manifold.r1Friction)).dot(
manifold.frictionVector2);
2013-02-19 22:16:20 +00:00
}
if (manifold.isBody2Moving) {
friction1Mass += manifold.massInverseBody2 +
((I2 * manifold.r2CrossT1).cross(manifold.r2Friction)).dot(
manifold.frictionVector1);
friction2Mass += manifold.massInverseBody2 +
((I2 * manifold.r2CrossT2).cross(manifold.r2Friction)).dot(
manifold.frictionVector2);
2013-02-19 22:16:20 +00:00
}
decimal frictionTwistMass = manifold.normal.dot(
manifold.inverseInertiaTensorBody1 *
manifold.normal) +
manifold.normal.dot(
manifold.inverseInertiaTensorBody2 *
manifold.normal);
friction1Mass > 0.0 ? manifold.inverseFriction1Mass = decimal(1.0)/friction1Mass
: decimal(0.0);
friction2Mass > 0.0 ? manifold.inverseFriction2Mass = decimal(1.0)/friction2Mass
: decimal(0.0);
frictionTwistMass > 0.0 ? manifold.inverseTwistFrictionMass = decimal(1.0) /
frictionTwistMass :
decimal(0.0);
2013-02-19 22:16:20 +00:00
}
}
}
// Warm start the solver.
/// For each constraint, we apply the previous impulse (from the previous step)
/// at the beginning. With this technique, we will converge faster towards
/// the solution of the linear system
2013-02-19 22:16:20 +00:00
void ContactSolver::warmStart() {
// Check that warm starting is active
if (!mIsWarmStartingActive) return;
2013-02-19 22:16:20 +00:00
// For each constraint
for (uint c=0; c<mNbContactManifolds; c++) {
2013-02-19 22:16:20 +00:00
ContactManifoldSolver& contactManifold = mContactConstraints[c];
bool atLeastOneRestingContactPoint = false;
for (uint i=0; i<contactManifold.nbContacts; i++) {
ContactPointSolver& contactPoint = contactManifold.contacts[i];
// If it is not a new contact (this contact was already existing at last time step)
if (contactPoint.isRestingContact) {
atLeastOneRestingContactPoint = true;
// --------- Penetration --------- //
// Compute the impulse P = J^T * lambda
const Impulse impulsePenetration = computePenetrationImpulse(
contactPoint.penetrationImpulse, contactPoint);
2013-02-19 22:16:20 +00:00
// Apply the impulse to the bodies of the constraint
applyImpulse(impulsePenetration, contactManifold);
// If we do not solve the friction constraints at the center of the contact manifold
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
// Project the old friction impulses (with old friction vectors) into
// the new friction vectors to get the new friction impulses
Vector3 oldFrictionImpulse = contactPoint.friction1Impulse *
contactPoint.oldFrictionVector1 +
contactPoint.friction2Impulse *
contactPoint.oldFrictionVector2;
contactPoint.friction1Impulse = oldFrictionImpulse.dot(
contactPoint.frictionVector1);
contactPoint.friction2Impulse = oldFrictionImpulse.dot(
contactPoint.frictionVector2);
2013-02-19 22:16:20 +00:00
// --------- Friction 1 --------- //
// Compute the impulse P = J^T * lambda
const Impulse impulseFriction1 = computeFriction1Impulse(
contactPoint.friction1Impulse, contactPoint);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction1, contactManifold);
// --------- Friction 2 --------- //
// Compute the impulse P=J^T * lambda
const Impulse impulseFriction2 = computeFriction2Impulse(
contactPoint.friction2Impulse, contactPoint);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction2, contactManifold);
}
}
else { // If it is a new contact point
// Initialize the accumulated impulses to zero
contactPoint.penetrationImpulse = 0.0;
contactPoint.friction1Impulse = 0.0;
contactPoint.friction2Impulse = 0.0;
}
}
// If we solve the friction constraints at the center of the contact manifold and there is
// at least one resting contact point in the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive && atLeastOneRestingContactPoint) {
// Project the old friction impulses (with old friction vectors) into the new friction
// vectors to get the new friction impulses
Vector3 oldFrictionImpulse = contactManifold.friction1Impulse *
contactManifold.oldFrictionVector1 +
contactManifold.friction2Impulse *
contactManifold.oldFrictionVector2;
contactManifold.friction1Impulse = oldFrictionImpulse.dot(
contactManifold.frictionVector1);
contactManifold.friction2Impulse = oldFrictionImpulse.dot(
contactManifold.frictionVector2);
// ------ First friction constraint at the center of the contact manifold ------ //
// Compute the impulse P = J^T * lambda
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 *
contactManifold.friction1Impulse;
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 *
contactManifold.friction1Impulse;
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 *
contactManifold.friction1Impulse;
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 *
contactManifold.friction1Impulse;
2013-02-19 22:16:20 +00:00
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction1, contactManifold);
// ------ Second friction constraint at the center of the contact manifold ----- //
// Compute the impulse P = J^T * lambda
linearImpulseBody1 = -contactManifold.frictionVector2 *
contactManifold.friction2Impulse;
angularImpulseBody1 = -contactManifold.r1CrossT2 *
contactManifold.friction2Impulse;
linearImpulseBody2 = contactManifold.frictionVector2 *
contactManifold.friction2Impulse;
angularImpulseBody2 = contactManifold.r2CrossT2 *
contactManifold.friction2Impulse;
2013-02-19 22:16:20 +00:00
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction2, contactManifold);
// ------ Twist friction constraint at the center of the contact manifold ------ //
2013-02-19 22:16:20 +00:00
// Compute the impulse P = J^T * lambda
2013-02-19 22:16:20 +00:00
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
angularImpulseBody1 = -contactManifold.normal * contactManifold.frictionTwistImpulse;
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);
angularImpulseBody2 = contactManifold.normal * contactManifold.frictionTwistImpulse;
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseTwistFriction, contactManifold);
}
else { // If it is a new contact manifold
// Initialize the accumulated impulses to zero
contactManifold.friction1Impulse = 0.0;
contactManifold.friction2Impulse = 0.0;
contactManifold.frictionTwistImpulse = 0.0;
}
}
}
// Solve the contacts
void ContactSolver::solve() {
PROFILE("ContactSolver::solve()");
2013-02-19 22:16:20 +00:00
decimal deltaLambda;
decimal lambdaTemp;
// For each contact manifold
for (uint c=0; c<mNbContactManifolds; c++) {
2013-02-19 22:16:20 +00:00
ContactManifoldSolver& contactManifold = mContactConstraints[c];
2013-02-19 22:16:20 +00:00
decimal sumPenetrationImpulse = 0.0;
2013-02-19 22:16:20 +00:00
// Get the constrained velocities
2013-05-02 20:41:57 +00:00
const Vector3& v1 = mLinearVelocities[contactManifold.indexBody1];
const Vector3& w1 = mAngularVelocities[contactManifold.indexBody1];
const Vector3& v2 = mLinearVelocities[contactManifold.indexBody2];
const Vector3& w2 = mAngularVelocities[contactManifold.indexBody2];
2013-02-19 22:16:20 +00:00
for (uint i=0; i<contactManifold.nbContacts; i++) {
2013-02-19 22:16:20 +00:00
ContactPointSolver& contactPoint = contactManifold.contacts[i];
2013-02-19 22:16:20 +00:00
// --------- Penetration --------- //
2013-02-19 22:16:20 +00:00
// Compute J*v
Vector3 deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
decimal deltaVDotN = deltaV.dot(contactPoint.normal);
decimal Jv = deltaVDotN;
// Compute the bias "b" of the constraint
decimal beta = mIsSplitImpulseActive ? BETA_SPLIT_IMPULSE : BETA;
decimal biasPenetrationDepth = 0.0;
if (contactPoint.penetrationDepth > SLOP) biasPenetrationDepth = -(beta/mTimeStep) *
max(0.0f, float(contactPoint.penetrationDepth - SLOP));
decimal b = biasPenetrationDepth + contactPoint.restitutionBias;
// Compute the Lagrange multiplier lambda
if (mIsSplitImpulseActive) {
deltaLambda = - (Jv + contactPoint.restitutionBias) *
contactPoint.inversePenetrationMass;
}
else {
deltaLambda = - (Jv + b) * contactPoint.inversePenetrationMass;
}
lambdaTemp = contactPoint.penetrationImpulse;
contactPoint.penetrationImpulse = std::max(contactPoint.penetrationImpulse +
deltaLambda, decimal(0.0));
deltaLambda = contactPoint.penetrationImpulse - lambdaTemp;
// Compute the impulse P=J^T * lambda
const Impulse impulsePenetration = computePenetrationImpulse(deltaLambda,
contactPoint);
// Apply the impulse to the bodies of the constraint
applyImpulse(impulsePenetration, contactManifold);
sumPenetrationImpulse += contactPoint.penetrationImpulse;
// If the split impulse position correction is active
if (mIsSplitImpulseActive) {
// Split impulse (position correction)
const Vector3& v1Split = mSplitLinearVelocities[contactManifold.indexBody1];
const Vector3& w1Split = mSplitAngularVelocities[contactManifold.indexBody1];
const Vector3& v2Split = mSplitLinearVelocities[contactManifold.indexBody2];
const Vector3& w2Split = mSplitAngularVelocities[contactManifold.indexBody2];
Vector3 deltaVSplit = v2Split + w2Split.cross(contactPoint.r2) -
v1Split - w1Split.cross(contactPoint.r1);
decimal JvSplit = deltaVSplit.dot(contactPoint.normal);
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) *
contactPoint.inversePenetrationMass;
decimal lambdaTempSplit = contactPoint.penetrationSplitImpulse;
contactPoint.penetrationSplitImpulse = std::max(
contactPoint.penetrationSplitImpulse +
deltaLambdaSplit, decimal(0.0));
deltaLambda = contactPoint.penetrationSplitImpulse - lambdaTempSplit;
2013-02-19 22:16:20 +00:00
// Compute the impulse P=J^T * lambda
const Impulse splitImpulsePenetration = computePenetrationImpulse(
deltaLambdaSplit, contactPoint);
2013-02-19 22:16:20 +00:00
applySplitImpulse(splitImpulsePenetration, contactManifold);
2013-02-19 22:16:20 +00:00
}
// If we do not solve the friction constraints at the center of the contact manifold
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
2013-02-19 22:16:20 +00:00
// --------- Friction 1 --------- //
2013-02-19 22:16:20 +00:00
// Compute J*v
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
Jv = deltaV.dot(contactPoint.frictionVector1);
2013-02-19 22:16:20 +00:00
// Compute the Lagrange multiplier lambda
deltaLambda = -Jv;
deltaLambda *= contactPoint.inverseFriction1Mass;
decimal frictionLimit = contactManifold.frictionCoefficient *
contactPoint.penetrationImpulse;
lambdaTemp = contactPoint.friction1Impulse;
contactPoint.friction1Impulse = std::max(-frictionLimit,
std::min(contactPoint.friction1Impulse
+ deltaLambda, frictionLimit));
deltaLambda = contactPoint.friction1Impulse - lambdaTemp;
2013-02-19 22:16:20 +00:00
// Compute the impulse P=J^T * lambda
const Impulse impulseFriction1 = computeFriction1Impulse(deltaLambda,
contactPoint);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction1, contactManifold);
// --------- Friction 2 --------- //
2013-02-19 22:16:20 +00:00
// Compute J*v
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
Jv = deltaV.dot(contactPoint.frictionVector2);
2013-02-19 22:16:20 +00:00
// Compute the Lagrange multiplier lambda
deltaLambda = -Jv;
deltaLambda *= contactPoint.inverseFriction2Mass;
frictionLimit = contactManifold.frictionCoefficient *
contactPoint.penetrationImpulse;
lambdaTemp = contactPoint.friction2Impulse;
contactPoint.friction2Impulse = std::max(-frictionLimit,
std::min(contactPoint.friction2Impulse
+ deltaLambda, frictionLimit));
deltaLambda = contactPoint.friction2Impulse - lambdaTemp;
2013-02-19 22:16:20 +00:00
// Compute the impulse P=J^T * lambda
const Impulse impulseFriction2 = computeFriction2Impulse(deltaLambda,
contactPoint);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction2, contactManifold);
}
}
2013-02-19 22:16:20 +00:00
// If we solve the friction constraints at the center of the contact manifold
if (mIsSolveFrictionAtContactManifoldCenterActive) {
2013-02-19 22:16:20 +00:00
// ------ First friction constraint at the center of the contact manifol ------ //
2013-02-19 22:16:20 +00:00
// Compute J*v
Vector3 deltaV = v2 + w2.cross(contactManifold.r2Friction)
- v1 - w1.cross(contactManifold.r1Friction);
decimal Jv = deltaV.dot(contactManifold.frictionVector1);
2013-02-19 22:16:20 +00:00
// Compute the Lagrange multiplier lambda
decimal deltaLambda = -Jv * contactManifold.inverseFriction1Mass;
decimal frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
lambdaTemp = contactManifold.friction1Impulse;
contactManifold.friction1Impulse = std::max(-frictionLimit,
std::min(contactManifold.friction1Impulse +
deltaLambda, frictionLimit));
deltaLambda = contactManifold.friction1Impulse - lambdaTemp;
2013-02-19 22:16:20 +00:00
// Compute the impulse P=J^T * lambda
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 * deltaLambda;
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 * deltaLambda;
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 * deltaLambda;
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 * deltaLambda;
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction1, contactManifold);
2013-02-19 22:16:20 +00:00
// ------ Second friction constraint at the center of the contact manifol ----- //
// Compute J*v
deltaV = v2 + w2.cross(contactManifold.r2Friction)
- v1 - w1.cross(contactManifold.r1Friction);
Jv = deltaV.dot(contactManifold.frictionVector2);
2013-02-19 22:16:20 +00:00
// Compute the Lagrange multiplier lambda
deltaLambda = -Jv * contactManifold.inverseFriction2Mass;
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
lambdaTemp = contactManifold.friction2Impulse;
contactManifold.friction2Impulse = std::max(-frictionLimit,
std::min(contactManifold.friction2Impulse +
deltaLambda, frictionLimit));
deltaLambda = contactManifold.friction2Impulse - lambdaTemp;
2013-02-19 22:16:20 +00:00
// Compute the impulse P=J^T * lambda
linearImpulseBody1 = -contactManifold.frictionVector2 * deltaLambda;
angularImpulseBody1 = -contactManifold.r1CrossT2 * deltaLambda;
linearImpulseBody2 = contactManifold.frictionVector2 * deltaLambda;
angularImpulseBody2 = contactManifold.r2CrossT2 * deltaLambda;
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseFriction2, contactManifold);
// ------ Twist friction constraint at the center of the contact manifol ------ //
2013-02-19 22:16:20 +00:00
// Compute J*v
deltaV = w2 - w1;
Jv = deltaV.dot(contactManifold.normal);
deltaLambda = -Jv * (contactManifold.inverseTwistFrictionMass);
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
lambdaTemp = contactManifold.frictionTwistImpulse;
contactManifold.frictionTwistImpulse = std::max(-frictionLimit,
std::min(contactManifold.frictionTwistImpulse
+ deltaLambda, frictionLimit));
deltaLambda = contactManifold.frictionTwistImpulse - lambdaTemp;
// Compute the impulse P=J^T * lambda
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
angularImpulseBody1 = -contactManifold.normal * deltaLambda;
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);;
angularImpulseBody2 = contactManifold.normal * deltaLambda;
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
linearImpulseBody2, angularImpulseBody2);
2013-02-19 22:16:20 +00:00
// Apply the impulses to the bodies of the constraint
applyImpulse(impulseTwistFriction, contactManifold);
}
}
2013-02-19 22:16:20 +00:00
}
// Store the computed impulses to use them to
// warm start the solver at the next iteration
void ContactSolver::storeImpulses() {
// For each contact manifold
for (uint c=0; c<mNbContactManifolds; c++) {
2013-02-19 22:16:20 +00:00
ContactManifoldSolver& manifold = mContactConstraints[c];
2013-02-19 22:16:20 +00:00
for (uint i=0; i<manifold.nbContacts; i++) {
2013-02-19 22:16:20 +00:00
ContactPointSolver& contactPoint = manifold.contacts[i];
2013-02-19 22:16:20 +00:00
2013-04-22 21:32:52 +00:00
contactPoint.externalContact->setPenetrationImpulse(contactPoint.penetrationImpulse);
contactPoint.externalContact->setFrictionImpulse1(contactPoint.friction1Impulse);
contactPoint.externalContact->setFrictionImpulse2(contactPoint.friction2Impulse);
2013-02-19 22:16:20 +00:00
contactPoint.externalContact->setFrictionVector1(contactPoint.frictionVector1);
contactPoint.externalContact->setFrictionVector2(contactPoint.frictionVector2);
2013-02-19 22:16:20 +00:00
}
manifold.externalContactManifold->setFrictionImpulse1(manifold.friction1Impulse);
manifold.externalContactManifold->setFrictionImpulse2(manifold.friction2Impulse);
manifold.externalContactManifold->setFrictionTwistImpulse(manifold.frictionTwistImpulse);
manifold.externalContactManifold->setFrictionVector1(manifold.frictionVector1);
manifold.externalContactManifold->setFrictionVector2(manifold.frictionVector2);
2013-02-19 22:16:20 +00:00
}
}
// Apply an impulse to the two bodies of a constraint
void ContactSolver::applyImpulse(const Impulse& impulse,
const ContactManifoldSolver& manifold) {
2013-02-19 22:16:20 +00:00
// Update the velocities of the bodies by applying the impulse P
if (manifold.isBody1Moving) {
2013-05-02 20:41:57 +00:00
mLinearVelocities[manifold.indexBody1] += manifold.massInverseBody1 *
2013-02-19 22:16:20 +00:00
impulse.linearImpulseBody1;
2013-05-02 20:41:57 +00:00
mAngularVelocities[manifold.indexBody1] += manifold.inverseInertiaTensorBody1 *
2013-02-19 22:16:20 +00:00
impulse.angularImpulseBody1;
}
if (manifold.isBody2Moving) {
2013-05-02 20:41:57 +00:00
mLinearVelocities[manifold.indexBody2] += manifold.massInverseBody2 *
2013-02-19 22:16:20 +00:00
impulse.linearImpulseBody2;
2013-05-02 20:41:57 +00:00
mAngularVelocities[manifold.indexBody2] += manifold.inverseInertiaTensorBody2 *
2013-02-19 22:16:20 +00:00
impulse.angularImpulseBody2;
}
}
// Apply an impulse to the two bodies of a constraint
void ContactSolver::applySplitImpulse(const Impulse& impulse,
const ContactManifoldSolver& manifold) {
2013-02-19 22:16:20 +00:00
// Update the velocities of the bodies by applying the impulse P
if (manifold.isBody1Moving) {
mSplitLinearVelocities[manifold.indexBody1] += manifold.massInverseBody1 *
2013-02-19 22:16:20 +00:00
impulse.linearImpulseBody1;
mSplitAngularVelocities[manifold.indexBody1] += manifold.inverseInertiaTensorBody1 *
2013-02-19 22:16:20 +00:00
impulse.angularImpulseBody1;
}
if (manifold.isBody2Moving) {
mSplitLinearVelocities[manifold.indexBody2] += manifold.massInverseBody2 *
impulse.linearImpulseBody2;
mSplitAngularVelocities[manifold.indexBody2] += manifold.inverseInertiaTensorBody2 *
2013-02-19 22:16:20 +00:00
impulse.angularImpulseBody2;
}
}
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
// for a contact point. The two vectors have to be such that : t1 x t2 = contactNormal.
2013-02-19 22:16:20 +00:00
void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
ContactPointSolver& contactPoint) const {
assert(contactPoint.normal.length() > 0.0);
// Compute the velocity difference vector in the tangential plane
Vector3 normalVelocity = deltaVelocity.dot(contactPoint.normal) * contactPoint.normal;
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
// If the velocty difference in the tangential plane is not zero
decimal lengthTangenVelocity = tangentVelocity.length();
if (lengthTangenVelocity > MACHINE_EPSILON) {
2013-02-19 22:16:20 +00:00
// Compute the first friction vector in the direction of the tangent
// velocity difference
contactPoint.frictionVector1 = tangentVelocity / lengthTangenVelocity;
}
else {
// Get any orthogonal vector to the normal as the first friction vector
contactPoint.frictionVector1 = contactPoint.normal.getOneUnitOrthogonalVector();
}
// The second friction vector is computed by the cross product of the firs
// friction vector and the contact normal
contactPoint.frictionVector2 =contactPoint.normal.cross(contactPoint.frictionVector1).getUnit();
2013-02-19 22:16:20 +00:00
}
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
// for a contact manifold. The two vectors have to be such that : t1 x t2 = contactNormal.
2013-02-19 22:16:20 +00:00
void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
ContactManifoldSolver& contact) const {
assert(contact.normal.length() > 0.0);
// Compute the velocity difference vector in the tangential plane
Vector3 normalVelocity = deltaVelocity.dot(contact.normal) * contact.normal;
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
// If the velocty difference in the tangential plane is not zero
decimal lengthTangenVelocity = tangentVelocity.length();
if (lengthTangenVelocity > MACHINE_EPSILON) {
2013-02-19 22:16:20 +00:00
// Compute the first friction vector in the direction of the tangent
// velocity difference
contact.frictionVector1 = tangentVelocity / lengthTangenVelocity;
}
else {
// Get any orthogonal vector to the normal as the first friction vector
contact.frictionVector1 = contact.normal.getOneUnitOrthogonalVector();
}
// The second friction vector is computed by the cross product of the firs
// friction vector and the contact normal
contact.frictionVector2 = contact.normal.cross(contact.frictionVector1).getUnit();
}
// Clean up the constraint solver
void ContactSolver::cleanup() {
2013-02-19 22:16:20 +00:00
mConstraintBodies.clear();
if (mContactConstraints != NULL) {
2013-02-19 22:16:20 +00:00
delete[] mContactConstraints;
mContactConstraints = NULL;
2013-02-19 22:16:20 +00:00
}
if (mSplitLinearVelocities != NULL) {
delete[] mSplitLinearVelocities;
mSplitLinearVelocities = NULL;
2013-02-19 22:16:20 +00:00
}
if (mSplitAngularVelocities != NULL) {
delete[] mSplitAngularVelocities;
mSplitAngularVelocities = NULL;
2013-02-19 22:16:20 +00:00
}
}