vall-e/vall_e/models/ar_nar.py

449 lines
12 KiB
Python
Raw Normal View History

from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim
class AR_NAR(Base):
@property
def causal(self):
return True
@property
def norm_type(self):
2023-09-07 14:14:03 +00:00
return "ln" # if self.n_resp_levels == 1 else "adaln"
@property
def arch_type(self) -> str:
if hasattr(self, "config") and self.config:
return self.config.arch_type
return cfg.model.arch_type
@property
def n_prom_levels(self) -> int:
return cfg.model.prom_levels
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
return cfg.model.tasks
@property
def n_langs(self) -> int:
return cfg.model.langs
@property
def n_tones(self) -> int:
return cfg.model.tones
@property
def recurrent_chunk_size(self) -> int:
return 0
"""
@property
def rotary_embedding_base(self) -> float:
if hasattr(self, "config") and self.config:
return self.config.rotary_embedding_base
return cfg.model.rotary_embedding_base
"""
@property
def interleave(self) -> bool:
return False
@property
def monolithic(self) -> bool:
return True
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
max_steps: int = 1000,
max_levels: int = 0,
max_resp_context: int = -1,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
):
device = text_list[0].device
batch_size = len(text_list)
# is training or NAR
if resps_list is not None:
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
# is training
if n_levels == self.n_resp_levels:
# might be better to have this decided on the dataloader level
if cfg.experimental and False:
# makes higher levels less likely
def generate( lo=0, hi=8 ):
index = lo
p = random.random()
for i in range(lo, hi):
if p < 1.0 / (2 ** i):
index = i
return int(index)
quant_levels = torch.Tensor([ generate(0, self.n_resp_levels) for _ in range(batch_size) ]).to(dtype=torch.int16)
else:
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
"""
if cfg.model.p_ar_level == "auto" or cfg.model.p_ar_level is None:
quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
else:
quant_levels = torch.Tensor([ 0 if random.random() < cfg.model.p_ar_level else random.randint(1, self.n_resp_levels) for _ in range(batch_size) ])
"""
2023-09-12 21:04:45 +00:00
targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target)
resps_list = [r if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # r[..., 0] is technically correct, but only r[:, 0] gets passed through the embedding
"""
if cfg.experimental:
proms_list = [ r if l == 0 else trim(r, 75 * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds
"""
# append stop tokens for AR
for i in range(batch_size):
if quant_levels[i] > 0:
continue
resps_list[i] = torch.cat([resps_list[i], torch.Tensor([[self.stop_token] * n_levels]).to(device=device, dtype=torch.int16) ])
targ_list[i] = torch.cat([targ_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
targ_list=targ_list,
2023-10-12 02:21:50 +00:00
lang_list=lang_list,
tone_list=tone_list
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
# is NAR
if max_levels == 0:
max_levels = self.n_resp_levels - 1
prev_list = resps_list
for n in trange( max_levels, desc="NAR" ):
2023-09-08 20:36:26 +00:00
level = prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
2023-10-12 02:21:50 +00:00
lang_list=lang_list,
tone_list=tone_list,
)
logits = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
resps_list = super().sample(
logits=logits,
resps_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
# is AR
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
stopped = torch.zeros(batch_size, device=device).bool()
recurrent_state = [] if cfg.inference.recurrent_forward else None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
scores = [ 1.0 ] * sampling_beam_width
if self.interleave:
max_steps *= self.n_prom_levels
# get next in sequence
for n in trange(max_steps // max(1, self.recurrent_chunk_size), desc="AR"):
# experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this.
# UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2
if max_resp_context > 0:
resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] )
else:
resps_list = self._unsqueeze_list(sequence_list)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
)
if recurrent_state is not None:
logits, recurrent_state = super().forward(
inputs=inputs,
state=recurrent_state,
)
else:
logits = super().forward(
inputs=inputs,
state=recurrent_state,
)
r = super().sample(
logits=logits,
resps_list=resps_list,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
)
if mirostat is not None:
# r is the state
mirostat = r
# extract token from state
r = [ state["token"] for state in mirostat ]
# we do it here because the sampler will already expand our logits list
elif sampling_beam_width > 0:
# expand tuple
r, s = r
# first step, expand batch
if batch_size == 1:
batch_size = sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
# append tokens
for i, ri in enumerate(r):
if self.stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width:
sequence_list = [ sequence_list[0] ]
return [self._prune(r) for r in sequence_list]
def example_usage():
#cfg.trainer.backend = "local"
2024-04-21 19:58:04 +00:00
cfg.hyperparameters.gradient_accumulation_steps = 1
2024-04-21 19:58:04 +00:00
from functools import partial
from einops import repeat
2024-04-21 19:58:04 +00:00
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
2023-09-07 22:08:38 +00:00
from ..utils import wrapper as ml
2024-04-21 19:58:04 +00:00
import numpy as np
import re
device = "cuda"
x8 = partial(repeat, pattern="t -> t l", l=cfg.model.prom_levels)
2024-04-21 19:58:04 +00:00
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
2024-04-21 19:58:04 +00:00
def _load_quants(path) -> Tensor:
if cfg.inference.audio_backend == "dac":
qnt = np.load(f'{path}.dac', allow_pickle=True)[()]
2024-04-29 03:28:29 +00:00
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16)
2024-04-21 19:58:04 +00:00
return torch.load(f'{path}.pt')[0][:, :cfg.model.prom_levels].t().to(torch.int16)
qnt = _load_quants("./data/qnt")
text_list = [
2024-04-21 19:58:04 +00:00
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
]
proms_list = [
qnt[:75, :].to(device),
]
resps_list = [
qnt.to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
2024-03-02 02:38:06 +00:00
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
kwargs = {
'n_tokens': 1024,
'd_model': 256,
'n_heads': 4,
'n_layers': 12,
'n_experts': 8,
}
2024-03-02 02:38:06 +00:00
"""
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
model = AR_NAR(**kwargs).to(device)
steps = 500
optimizer = ml.Prodigy(model.parameters(), lr=1.0)
#optimizer = ml.Adagrad(model.parameters(), lr=1.0e-2)
#optimizer = ml.AdamW(model.parameters(), lr=1.0e-4)
engine = Engine(model=model, optimizer=optimizer)
2023-09-07 14:14:03 +00:00
if (cfg.optimizations.bitsandbytes and cfg.optimizations.replace) or (cfg.optimizations.fp8):
model.model = ml.replace_linear( model.model )
torch.save( {
'module': model.state_dict()
}, "./data/test.pth" )
2023-09-07 14:14:03 +00:00
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.inference_mode()
def sample( name, steps=1000 ):
if cfg.inference.audio_backend == "dac" and name == "init":
return
engine.eval()
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
if cfg.inference.audio_backend != "dac":
for i, o in enumerate(resps_list):
_ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
resps_list = [r.unsqueeze(-1) for r in resps_list]
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
2023-09-07 22:08:38 +00:00
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
torch.save( {
'module': model.state_dict()
}, "./data/test.pth" )
sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
example_usage()