|
39f961abcd
|
test trainer (vall_e.models.ar_nar) tests some SpeechX features
|
2024-07-18 18:46:45 -05:00 |
|
|
83a0954f85
|
fixes for re-introducing SpeechX tasks (need to actually validate if these all do the right things)
|
2024-07-18 17:16:32 -05:00 |
|
|
bccbb77a1a
|
added option to either naively concat codes to concat audio waveforms (prior behavior) or to decode => concat => encode instead (although this only currently happens for prom sampling if an utternace is too small)
|
2024-07-18 16:48:41 -05:00 |
|
|
97e768601c
|
re-introducing SpeechX tasks (need to validate them all, everything works with base tts anyways)
|
2024-07-18 16:16:14 -05:00 |
|
|
c2b8035e74
|
oops, kept forgetting to actually pass in lang/tone tokens (despite not really using these at the moment)
|
2024-07-18 14:18:34 -05:00 |
|
|
22fe53508c
|
added experimental disjointed position IDs (because I *think* this might help because technically a sequence is made up of several parts, and the position embeddings shouldn't be unified)
|
2024-07-16 19:52:41 -05:00 |
|
|
fe0f235335
|
mechanism to store the model config inside the weights and load them, some other things to allow LoRA training on the RetNet (gradient checkpointing will gripe about inputs not having require_grad and nothing seems to remedy it)
|
2024-07-16 18:23:13 -05:00 |
|
|
3acc54df22
|
allow loading a different model within the web ui (apparently I did not have the web UI in the documentation)
|
2024-07-15 19:59:48 -05:00 |
|
|
7b210d9738
|
sanity cleanup
|
2024-07-04 15:58:08 -05:00 |
|
|
1ecf2793f4
|
(commented-out) support for facebookresearch/AudioDec, but support really didn't wow me (so I commented it out until I figure out why my output audio is super crusty with AudioDec)
|
2024-07-04 15:40:51 -05:00 |
|
|
db62e55a38
|
oops, I forgot to use the new thing for audio_backend
|
2024-07-04 14:54:11 -05:00 |
|
|
f770467eb3
|
stuff
|
2024-07-01 18:13:29 -05:00 |
|
|
312a8e3ead
|
add shuffle to samplers that can support it
|
2024-06-30 11:36:46 -05:00 |
|
|
396af541c5
|
ugh
|
2024-06-30 11:11:58 -05:00 |
|
|
dced595391
|
more cleanup
|
2024-06-30 11:00:12 -05:00 |
|
|
bc2a6fa756
|
sanity cleanup: moved experimental features under its own thing
|
2024-06-30 10:37:33 -05:00 |
|
|
b21f74a5c5
|
added summing of external embeddings (at this point i dont think any amount of cope bandaids will get DAC to train nicely, I think the RVQ levels the NAR tends add too much noise if they're not accurate)
|
2024-06-29 23:42:30 -05:00 |
|
|
793ccb16fb
|
ugh
|
2024-06-29 22:14:35 -05:00 |
|
|
2808f881c8
|
cleaned up subjugated audio embedding into a flag, flag can also have it include the original, underlying embedding as well (it seems to do better when set to inclusive)
|
2024-06-29 21:46:35 -05:00 |
|
|
ec5eaebcbc
|
experimental method of using DACs quantizer ""embeddings"" to see if it helps with model quality
|
2024-06-29 19:46:11 -05:00 |
|
|
a8718d35a4
|
nasty bandaid because some of my DAC dataset only has 8 RVQ levels instead of the full 9
|
2024-06-29 10:16:37 -05:00 |
|
|
c4dd523b6f
|
change from chunk-slicing paths for distributed dataloader to instead interleave
|
2024-06-29 10:10:35 -05:00 |
|
|
dd40463803
|
limit eval size because the training batch size seems to be used for the eval dataloader, somehow (bandaid)
|
2024-06-29 09:11:28 -05:00 |
|
|
591d3ac848
|
have eval dataloader use eval batch size for batchedordersampler
|
2024-06-28 22:44:00 -05:00 |
|
|
1a392b69f6
|
local training backend should be a bit more aware of variable batch sizes, maybe
|
2024-06-28 22:39:05 -05:00 |
|
|
83075c1505
|
sort duration buckets to ensure that paths sorted-by-duration are actually sorted by duration (because i didnt know that python dicts can have non-strings as keys), added batching samples based on total duration to ensure best training throughput
|
2024-06-28 22:28:54 -05:00 |
|
|
5176ced35f
|
readme tweaks
|
2024-06-28 21:02:54 -05:00 |
|
|
8fffb94964
|
backport fix from tortoise_tts with local trainer + loading state when training lora
|
2024-06-25 13:41:29 -05:00 |
|
|
62a53eed64
|
fixed deducing tokenizer path, added option to default to naive tokenizer (for old models, like ar+nar-retnet-8)
|
2024-06-18 22:11:14 -05:00 |
|
|
8a986eb480
|
load exported LoRA weights if exists (to-do: make a better LoRA loading mechanism)
|
2024-06-18 21:45:46 -05:00 |
|
|
2bfe786ebd
|
ban stop token for NAR levels (because sometimes it gets sampled and causes problems)
|
2024-06-17 22:14:43 -05:00 |
|
|
7cfb78fa64
|
enable LoRA for targetted RVQ levels (to experiment with, seems to help)
|
2024-06-17 21:45:03 -05:00 |
|
|
7047fcc6e2
|
actually make deepspeed work with LoRAs
|
2024-06-17 13:55:37 -05:00 |
|
|
1d159b1476
|
updated export routine to split LoRA weights from the state dict (should work with deepspeed)
|
2024-06-17 13:28:18 -05:00 |
|
|
726a4b613f
|
naive, rudimentary DeepSpeed support (just live with the LoRA weights living with the original weights, they can be split later)
|
2024-06-17 13:17:24 -05:00 |
|
|
bd0bc10ec0
|
added LoRA policy to decide what layer of the model gets adapted based on simple inclusion/exclusion terms
|
2024-06-17 13:05:06 -05:00 |
|
|
be051d9544
|
added other LoRA method using parametrization rather than linear injection
|
2024-06-17 09:58:34 -05:00 |
|
|
45a39fb79f
|
very rudimentary lora support (no deepspeed support, tested training and saving but not loading yet)
|
2024-06-17 00:09:16 -05:00 |
|
|
19410a919e
|
ugh
|
2024-06-15 12:29:03 -05:00 |
|
|
d343bde09b
|
residual_in_fp32=False for mamba arch backends because it breaks the classifier (output projection / lm head / what-have-you) under AMP
|
2024-06-15 12:08:03 -05:00 |
|
|
ccb14c06ef
|
mamba2-hf using vasqu/mamba2-torch because it lets me use mamba2 without triton ops (training with my 4xV100s are not happy with mamba2 because of triton)
|
2024-06-14 19:42:17 -05:00 |
|
|
31f71fa134
|
sampler update (some brainworm just never actually had a sampler for sample_type=path)
|
2024-06-14 16:55:40 -05:00 |
|
|
b3b67f34ac
|
added option to sort paths by durations to better group equally lengthed sequences together (and there was maybe a logic error from creating the samplers and then interleave-reordering paths, desyncing them, maybe)
|
2024-06-13 22:37:34 -05:00 |
|
|
83eab4fa59
|
actually going for the suggested "2x layers, no intermediate scaling" is wrong for VALL-E, directly copying the normal transformer structure fixes mamba2 performance in the test trainer
|
2024-06-13 20:08:22 -05:00 |
|
|
ff97e7480d
|
fixed pip shitting itself on setup
|
2024-06-13 13:03:36 -05:00 |
|
|
26da24fd8d
|
mamba updated to fix that pesky NaN error during training
|
2024-06-13 12:38:33 -05:00 |
|
|
bcf3910a17
|
the NAR only dream is dead (it just won't work)
|
2024-06-12 19:49:47 -05:00 |
|
|
a9353cf9fa
|
ugh
|
2024-06-12 00:14:29 -05:00 |
|
|
cca542a4c0
|
ugh
|
2024-06-11 23:59:28 -05:00 |
|
|
65a8960305
|
option to split classifier per-level instead of sharing one (at this point I'm just scrambling to try and cope with training a DAC model, the NAR is being a pain)
|
2024-06-11 22:28:59 -05:00 |
|