Commit Graph

151 Commits

Author SHA1 Message Date
mrq
eac353cd0b busy work and cleanup while I wait for 1TB of audio to quantize... again. 2024-08-06 20:23:33 -05:00
mrq
2cb465018b implicitly load either normal pickled weights or safetensors on loading the model 2024-08-03 23:34:18 -05:00
mrq
c09133d00f added safetensors support (with metadata) and feed whatever torch.load/torch.save into it 2024-08-03 23:15:20 -05:00
mrq
6a733eb2ed changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful 2024-08-03 22:10:21 -05:00
mrq
11fa3da665 some cleanup, fixed the wrapper attention to explicitly use other sdpa backends 2024-08-03 19:51:00 -05:00
mrq
c9ec6b28ef it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
mrq
b4c895114c naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there) 2024-08-01 20:12:06 -05:00
mrq
387358bc8a fixes for the NAR-len model, and documentation some config options, and a better way to handle resizing modules on state_dict load 2024-07-31 20:35:09 -05:00
mrq
52d13b321f I rather have it default to non-strict loading instead so I can clean up YAMLs 2024-07-30 22:24:38 -05:00
mrq
07f8e2ad06 added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight) 2024-07-30 20:53:51 -05:00
mrq
682e4387dc oops (fixed proms being erased from a config oversight) 2024-07-25 12:39:57 -05:00
mrq
1acb0e9c84 added experimental training setting to perform token dropout to MAYBE compensate for errors from the preceding RVQ level (two types: token error offset, token dropout embedding replace) 2024-07-24 19:35:17 -05:00
mrq
75b04686f8 added prom-less training / inferencing, some other things 2024-07-22 19:36:07 -05:00
mrq
e19aa643a6 cleaned up demo page creation, added option to pass in RVQ level sampling distribution for training 2024-07-21 19:12:03 -05:00
mrq
d53038a9e4 actually have split classifiers working 2024-07-19 15:33:31 -05:00
mrq
83a0954f85 fixes for re-introducing SpeechX tasks (need to actually validate if these all do the right things) 2024-07-18 17:16:32 -05:00
mrq
bccbb77a1a added option to either naively concat codes to concat audio waveforms (prior behavior) or to decode => concat => encode instead (although this only currently happens for prom sampling if an utternace is too small) 2024-07-18 16:48:41 -05:00
mrq
97e768601c re-introducing SpeechX tasks (need to validate them all, everything works with base tts anyways) 2024-07-18 16:16:14 -05:00
mrq
22fe53508c added experimental disjointed position IDs (because I *think* this might help because technically a sequence is made up of several parts, and the position embeddings shouldn't be unified) 2024-07-16 19:52:41 -05:00
mrq
fe0f235335 mechanism to store the model config inside the weights and load them, some other things to allow LoRA training on the RetNet (gradient checkpointing will gripe about inputs not having require_grad and nothing seems to remedy it) 2024-07-16 18:23:13 -05:00
mrq
3acc54df22 allow loading a different model within the web ui (apparently I did not have the web UI in the documentation) 2024-07-15 19:59:48 -05:00
mrq
7b210d9738 sanity cleanup 2024-07-04 15:58:08 -05:00
mrq
1ecf2793f4 (commented-out) support for facebookresearch/AudioDec, but support really didn't wow me (so I commented it out until I figure out why my output audio is super crusty with AudioDec) 2024-07-04 15:40:51 -05:00
mrq
f770467eb3 stuff 2024-07-01 18:13:29 -05:00
mrq
312a8e3ead add shuffle to samplers that can support it 2024-06-30 11:36:46 -05:00
mrq
396af541c5 ugh 2024-06-30 11:11:58 -05:00
mrq
dced595391 more cleanup 2024-06-30 11:00:12 -05:00
mrq
bc2a6fa756 sanity cleanup: moved experimental features under its own thing 2024-06-30 10:37:33 -05:00
mrq
2808f881c8 cleaned up subjugated audio embedding into a flag, flag can also have it include the original, underlying embedding as well (it seems to do better when set to inclusive) 2024-06-29 21:46:35 -05:00
mrq
ec5eaebcbc experimental method of using DACs quantizer ""embeddings"" to see if it helps with model quality 2024-06-29 19:46:11 -05:00
mrq
83075c1505 sort duration buckets to ensure that paths sorted-by-duration are actually sorted by duration (because i didnt know that python dicts can have non-strings as keys), added batching samples based on total duration to ensure best training throughput 2024-06-28 22:28:54 -05:00
mrq
8fffb94964 backport fix from tortoise_tts with local trainer + loading state when training lora 2024-06-25 13:41:29 -05:00
mrq
62a53eed64 fixed deducing tokenizer path, added option to default to naive tokenizer (for old models, like ar+nar-retnet-8) 2024-06-18 22:11:14 -05:00
mrq
8a986eb480 load exported LoRA weights if exists (to-do: make a better LoRA loading mechanism) 2024-06-18 21:45:46 -05:00
mrq
7cfb78fa64 enable LoRA for targetted RVQ levels (to experiment with, seems to help) 2024-06-17 21:45:03 -05:00
mrq
1d159b1476 updated export routine to split LoRA weights from the state dict (should work with deepspeed) 2024-06-17 13:28:18 -05:00
mrq
bd0bc10ec0 added LoRA policy to decide what layer of the model gets adapted based on simple inclusion/exclusion terms 2024-06-17 13:05:06 -05:00
mrq
45a39fb79f very rudimentary lora support (no deepspeed support, tested training and saving but not loading yet) 2024-06-17 00:09:16 -05:00
mrq
b3b67f34ac added option to sort paths by durations to better group equally lengthed sequences together (and there was maybe a logic error from creating the samplers and then interleave-reordering paths, desyncing them, maybe) 2024-06-13 22:37:34 -05:00
mrq
65a8960305 option to split classifier per-level instead of sharing one (at this point I'm just scrambling to try and cope with training a DAC model, the NAR is being a pain) 2024-06-11 22:28:59 -05:00
mrq
a7a6e0ac76 validated that inferencing works, changed some defaults (NAR benefits from greedy sampling) 2024-06-09 17:11:38 -05:00
mrq
132a02c48b sanity cleanup, backup config yaml for each log file 2024-06-09 11:22:52 -05:00
mrq
58fb0a84db added experimental NAR only model (inferences text length, need more experimenting), AudioEmbedding logic cleanup (I still think it's being done wrong) 2024-06-08 15:42:02 -05:00
mrq
e35a91c67a ugh 2024-06-07 21:56:14 -05:00
mrq
eafa622be2 I forgot the actual reason I was cleaning things up was to re-include prom loss calculation (I realized the reason I did this was because of an prom embedding oversight, it seems to work now) 2024-06-07 20:29:25 -05:00
mrq
da8242d086 finally got around to removing omegaconf 2024-06-07 20:23:53 -05:00
mrq
b2194b859a re-added loading multiple models because I'm now entertaining having split AR/NAR models again (and need a way to load both at once) 2024-06-06 09:48:43 -05:00
mrq
4073656293 oops 2024-06-05 20:53:10 -05:00
mrq
48cd1054f9 madness 2024-06-04 23:48:51 -05:00
mrq
406ff7bbe1 re-implemented config.model.interleave for the HF-compat experimental method 2024-06-04 14:19:52 -05:00