Commit Graph

48 Commits

Author SHA1 Message Date
mrq
ca31da0a95 sageattn (forgot to bother with testing this the other day, seems ifne) 2024-12-03 15:14:57 -06:00
mrq
84a05acb6d touch ups in docs 2024-12-02 19:10:42 -06:00
mrq
dcaf38b359 fixed training tqdm being stubborn 2024-11-23 09:45:23 -06:00
mrq
41d7c30ea5 added much cleaner non-causal mask generation 2024-11-22 19:43:32 -06:00
mrq
c99a74e834 actually generate a causal mask because it seems sometimes it does not actually generate one because it makes assumptions 2024-11-22 18:30:24 -06:00
mrq
ccee5fc11c that was actually all pointless since sdpa always had an attention mask fed to it and does not need is_causal to implicitly generate one 2024-11-22 16:51:50 -06:00
mrq
4aa685e749 what has science done 2024-11-22 16:45:40 -06:00
mrq
147219a5e0 huge oversight in the attention masking......... (i realized I have not been providing a non-causal mask to non-causal tasks) 2024-11-22 13:44:43 -06:00
mrq
24d888c47c temporarily dropping support for xformers because it's breaking when using an attention mask (which i dont remember commenting it out when being passed), default to not use wandb because it's being a pain when doing tests and not actual sessionsS) 2024-11-22 11:29:12 -06:00
mrq
2cef97e43f cleanup 2024-11-21 23:08:43 -06:00
mrq
c6a38693a2 This better work 2024-11-09 18:04:59 -06:00
mrq
c83670c38c Windows specific fixes (to-do: find libespeak-ng.dll automatically because it cannot be trusted to do it by default) 2024-11-03 19:19:15 -06:00
mrq
ded746e157 very, very naive layerskip speculative sampling (it just checks if the current layer's state is good enough) 2024-11-02 11:49:05 -05:00
mrq
ec79230965 shuffled web UI options hidden by cfg.experimental to its own tab, expose early exit selection to inferencing (it kinda works naively, still need to implement self-speculation) 2024-11-01 21:30:06 -05:00
mrq
fb8faa295b actually float16(+AMP) and layerskip is bad and will kill the model...... 2024-11-01 18:36:44 -05:00
mrq
9b6c57bc57 third time's the charm (for some reason it escaped me that I should treat early exit loss as an aux_loss to be used with the normal loss, as if I was training a MoE's router) 2024-11-01 12:50:37 -05:00
mrq
76ebef45dc off-by-one... 2024-10-31 13:24:48 -05:00
mrq
b63293cbbe ugh 2024-10-30 22:49:11 -05:00
mrq
a22534e8f4 layer skip training implemented (need to gut the inferencing from the repo, and to actually see if the model can benefit from this) 2024-10-30 20:05:45 -05:00
mrq
fc8dfd8617 made greedy AR sampling viable (and preferable), with caveats (per comment in vall_e.models.ar_nar) 2024-10-18 16:55:00 -05:00
mrq
84005c5b00 entropix apparently processes the entire sequence of logits but it falls apart when doing that 2024-10-13 12:01:12 -05:00
mrq
c800d28bb8 respect attention defined in the yaml for web UI (which might explain why theres been a discrepancy in outputs for me) 2024-10-13 11:02:24 -05:00
mrq
ed6b7a690f ugh......... 2024-10-13 00:26:46 -05:00
mrq
d405f243d4 at wits end in trying to output the right attention scores 2024-10-12 23:53:13 -05:00
mrq
70cf694cfd output attention scores for SDPA/flash, since naive attention seems broken 2024-10-12 12:09:17 -05:00
mrq
04e983b86b modified demo page to be more modular with demoing comparisons, actually provide a path to use modified naive attention, entropix sampling is not tied to an experimental yaml flag now 2024-10-12 11:27:55 -05:00
mrq
3d6ef9666b overridden naive llama attention to get the right score values that entropix needs 2024-10-12 10:05:47 -05:00
mrq
168e203942 ugh 2024-08-30 14:39:07 -05:00
mrq
685f4faec0 ugh 2024-08-30 10:46:26 -05:00
mrq
32287710a2 moved prints to use logger, edited readme (fused_attn doesnt seem stable for training) 2024-08-29 13:27:16 -05:00
mrq
d423bc03c2 fixed attentions for MoE 2024-08-27 17:02:42 -05:00
mrq
0d706ec6a1 added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm 2024-08-26 19:13:34 -05:00
mrq
6b0891448c pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good) 2024-08-25 20:07:27 -05:00
mrq
40e1799adc fixed xformers and flash_attn to actually work now 2024-08-19 01:03:35 -05:00
mrq
29c35528e5 the sooner I accept there's no FA for V100s the sooner I'll go to bed 2024-08-18 23:54:33 -05:00
mrq
d636edd3a2 added flash_attn LlamaAttention (including flash_attn==1.0.9) 2024-08-18 20:51:14 -05:00
mrq
2a1794c084 ughghghhhh 2024-08-09 21:15:01 -05:00
mrq
d04f6911b4 oops 2024-08-08 19:38:55 -05:00
mrq
949339a3fa do not include SDPA attention if there's no available SDPA backends 2024-08-06 20:42:39 -05:00
mrq
debcc93e7e add adapted MixtralAttention for when I make a bad decision to actually train a MoE 2024-08-04 22:03:22 -05:00
mrq
10aaf840e7 added export option to convert Llama to MixtralMoE for another dumb experiment 2024-08-04 20:25:06 -05:00
mrq
11fa3da665 some cleanup, fixed the wrapper attention to explicitly use other sdpa backends 2024-08-03 19:51:00 -05:00
mrq
9564ecda43 wrapper attention class for other sdpa backends + xformers seems to have broke... 2024-08-03 15:12:11 -05:00
mrq
ccb14c06ef mamba2-hf using vasqu/mamba2-torch because it lets me use mamba2 without triton ops (training with my 4xV100s are not happy with mamba2 because of triton) 2024-06-14 19:42:17 -05:00
mrq
83eab4fa59 actually going for the suggested "2x layers, no intermediate scaling" is wrong for VALL-E, directly copying the normal transformer structure fixes mamba2 performance in the test trainer 2024-06-13 20:08:22 -05:00
mrq
65a8960305 option to split classifier per-level instead of sharing one (at this point I'm just scrambling to try and cope with training a DAC model, the NAR is being a pain) 2024-06-11 22:28:59 -05:00
mrq
b2194b859a re-added loading multiple models because I'm now entertaining having split AR/NAR models again (and need a way to load both at once) 2024-06-06 09:48:43 -05:00
mrq
ff6fe6f1bc cleanup 2024-06-05 20:30:43 -05:00