GLdc/GL/matrix.c

531 lines
13 KiB
C
Raw Normal View History

#include <string.h>
#include <stdio.h>
2019-09-06 08:35:33 +00:00
#include <dc/fmath.h>
#include <dc/matrix.h>
#include <dc/matrix3d.h>
#include <dc/vec3f.h>
#include "private.h"
#include "../include/gl.h"
#include "../containers/stack.h"
2018-05-20 15:16:53 +00:00
#define DEG2RAD (0.01745329251994329576923690768489)
/* Depth range */
GLfloat DEPTH_RANGE_MULTIPLIER_L = (1 - 0) / 2;
GLfloat DEPTH_RANGE_MULTIPLIER_H = (0 + 1) / 2;
/* Viewport size */
static GLint gl_viewport_x1, gl_viewport_y1, gl_viewport_width, gl_viewport_height;
static Stack MATRIX_STACKS[3]; // modelview, projection, texture
static Matrix4x4 NORMAL_MATRIX __attribute__((aligned(32)));
static Matrix4x4 SCREENVIEW_MATRIX __attribute__((aligned(32)));
static GLenum MATRIX_MODE = GL_MODELVIEW;
static GLubyte MATRIX_IDX = 0;
static const Matrix4x4 IDENTITY = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
GLfloat NEAR_PLANE_DISTANCE = 0.0f;
static inline void upload_matrix(Matrix4x4* m) {
mat_load((matrix_t*) m);
}
static inline void multiply_matrix(Matrix4x4* m) {
mat_apply((matrix_t*) m);
}
static inline void download_matrix(Matrix4x4* m) {
mat_store((matrix_t*) m);
}
Matrix4x4* _glGetProjectionMatrix() {
return (Matrix4x4*) stack_top(&MATRIX_STACKS[1]);
}
Matrix4x4* _glGetModelViewMatrix() {
return (Matrix4x4*) stack_top(&MATRIX_STACKS[0]);
}
void _glInitMatrices() {
init_stack(&MATRIX_STACKS[0], sizeof(Matrix4x4), 32);
init_stack(&MATRIX_STACKS[1], sizeof(Matrix4x4), 32);
init_stack(&MATRIX_STACKS[2], sizeof(Matrix4x4), 32);
stack_push(&MATRIX_STACKS[0], IDENTITY);
stack_push(&MATRIX_STACKS[1], IDENTITY);
stack_push(&MATRIX_STACKS[2], IDENTITY);
memcpy4(NORMAL_MATRIX, IDENTITY, sizeof(Matrix4x4));
memcpy4(SCREENVIEW_MATRIX, IDENTITY, sizeof(Matrix4x4));
glDepthRange(0.0f, 1.0f);
glViewport(0, 0, vid_mode->width, vid_mode->height);
}
2018-05-16 20:30:11 +00:00
#define swap(a, b) { \
GLfloat x = (a); \
a = b; \
b = x; \
}
static void inverse(GLfloat* m) {
GLfloat f4 = m[4];
GLfloat f8 = m[8];
GLfloat f1 = m[1];
GLfloat f9 = m[9];
GLfloat f2 = m[2];
GLfloat f6 = m[6];
GLfloat f12 = m[12];
GLfloat f13 = m[13];
GLfloat f14 = m[14];
m[1] = f4;
m[2] = f8;
m[4] = f1;
m[6] = f9;
m[8] = f2;
m[9] = f6;
m[12] = -(f12 * m[0] + f13 * m[4] + f14 * m[8]);
m[13] = -(f12 * m[1] + f13 * m[5] + f14 * m[9]);
m[14] = -(f12 * m[2] + f13 * m[6] + f14 * m[10]);
}
2018-05-16 20:30:11 +00:00
static void transpose(GLfloat* m) {
swap(m[1], m[4]);
swap(m[2], m[8]);
swap(m[3], m[12]);
swap(m[6], m[9]);
swap(m[7], m[3]);
swap(m[11], m[14]);
}
static void recalculateNormalMatrix() {
memcpy4(NORMAL_MATRIX, stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)), sizeof(Matrix4x4));
2018-05-16 20:30:11 +00:00
inverse((GLfloat*) NORMAL_MATRIX);
2018-05-19 08:17:24 +00:00
transpose((GLfloat*) NORMAL_MATRIX);
}
void APIENTRY glMatrixMode(GLenum mode) {
MATRIX_MODE = mode;
MATRIX_IDX = mode & 0xF;
}
void APIENTRY glPushMatrix() {
stack_push(MATRIX_STACKS + MATRIX_IDX, stack_top(MATRIX_STACKS + MATRIX_IDX));
}
void APIENTRY glPopMatrix() {
stack_pop(MATRIX_STACKS + MATRIX_IDX);
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glLoadIdentity() {
stack_replace(MATRIX_STACKS + MATRIX_IDX, IDENTITY);
}
void APIENTRY glTranslatef(GLfloat x, GLfloat y, GLfloat z) {
static Matrix4x4 trn __attribute__((aligned(32))) = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
trn[M12] = x;
trn[M13] = y;
trn[M14] = z;
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&trn);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glScalef(GLfloat x, GLfloat y, GLfloat z) {
static Matrix4x4 scale __attribute__((aligned(32))) = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
scale[M0] = x;
scale[M5] = y;
scale[M10] = z;
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&scale);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
void APIENTRY glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {
static Matrix4x4 rotate __attribute__((aligned(32))) = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
2019-10-04 14:29:54 +00:00
float r = DEG2RAD * angle;
float c = cos(r);
float s = sin(r);
float invc = 1.0f - c;
float xs = x * s;
float zs = z * s;
float ys = y * s;
float xz = x * z;
float xy = y * x;
float yz = y * z;
vec3f_normalize(x, y, z);
rotate[M0] = (x * x) * invc + c;
rotate[M1] = xy * invc + zs;
rotate[M2] = xz * invc - ys;
rotate[M4] = xy * invc - zs;
rotate[M5] = (y * y) * invc + c;
rotate[M6] = yz * invc + xs;
rotate[M8] = xz * invc + ys;
rotate[M9] = yz * invc - xs;
rotate[M10] = (z * z) * invc + c;
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&rotate);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Load an arbitrary matrix */
void APIENTRY glLoadMatrixf(const GLfloat *m) {
static Matrix4x4 TEMP;
TEMP[M0] = m[0];
TEMP[M1] = m[1];
TEMP[M2] = m[2];
TEMP[M3] = m[3];
TEMP[M4] = m[4];
TEMP[M5] = m[5];
TEMP[M6] = m[6];
TEMP[M7] = m[7];
TEMP[M8] = m[8];
TEMP[M9] = m[9];
TEMP[M10] = m[10];
TEMP[M11] = m[11];
TEMP[M12] = m[12];
TEMP[M13] = m[13];
TEMP[M14] = m[14];
TEMP[M15] = m[15];
stack_replace(MATRIX_STACKS + MATRIX_IDX, TEMP);
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Ortho */
void APIENTRY glOrtho(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
/* Ortho Matrix */
static Matrix4x4 OrthoMatrix __attribute__((aligned(32))) = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
OrthoMatrix[M0] = 2.0f / (right - left);
OrthoMatrix[M5] = 2.0f / (top - bottom);
OrthoMatrix[M10] = -2.0f / (zfar - znear);
OrthoMatrix[M12] = -(right + left) / (right - left);
OrthoMatrix[M13] = -(top + bottom) / (top - bottom);
OrthoMatrix[M14] = -(zfar + znear) / (zfar - znear);
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&OrthoMatrix);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
}
/* Set the GL frustum */
void APIENTRY glFrustum(GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat znear, GLfloat zfar) {
/* Frustum Matrix */
static Matrix4x4 FrustumMatrix __attribute__((aligned(32)));
memset(FrustumMatrix, 0, sizeof(float) * 16);
const float near2 = 2.0f * znear;
const float A = (right + left) / (right - left);
const float B = (top + bottom) / (top - bottom);
const float C = -((zfar + znear) / (zfar - znear));
const float D = -((2.0f * zfar * znear) / (zfar - znear));
FrustumMatrix[M0] = near2 / (right - left);
FrustumMatrix[M5] = near2 / (top - bottom);
FrustumMatrix[M8] = A;
FrustumMatrix[M9] = B;
FrustumMatrix[M10] = C;
FrustumMatrix[M11] = -1.0f;
FrustumMatrix[M14] = D;
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&FrustumMatrix);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
}
/* Multiply the current matrix by an arbitrary matrix */
void glMultMatrixf(const GLfloat *m) {
static Matrix4x4 TEMP;
TEMP[M0] = m[0];
TEMP[M1] = m[1];
TEMP[M2] = m[2];
TEMP[M3] = m[3];
TEMP[M4] = m[4];
TEMP[M5] = m[5];
TEMP[M6] = m[6];
TEMP[M7] = m[7];
TEMP[M8] = m[8];
TEMP[M9] = m[9];
TEMP[M10] = m[10];
TEMP[M11] = m[11];
TEMP[M12] = m[12];
TEMP[M13] = m[13];
TEMP[M14] = m[14];
TEMP[M15] = m[15];
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix((Matrix4x4*) &TEMP);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Load an arbitrary transposed matrix */
void glLoadTransposeMatrixf(const GLfloat *m) {
/* We store matrices transpose anyway, so m will be
* transpose compared to all other matrices */
static Matrix4x4 TEMP __attribute__((aligned(32)));
TEMP[M0] = m[0];
TEMP[M1] = m[4];
TEMP[M2] = m[8];
TEMP[M3] = m[12];
TEMP[M4] = m[1];
TEMP[M5] = m[5];
TEMP[M6] = m[9];
TEMP[M7] = m[13];
TEMP[M8] = m[3];
TEMP[M9] = m[6];
TEMP[M10] = m[10];
TEMP[M11] = m[14];
TEMP[M12] = m[4];
TEMP[M13] = m[7];
TEMP[M14] = m[11];
TEMP[M15] = m[15];
stack_replace(MATRIX_STACKS + MATRIX_IDX, TEMP);
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Multiply the current matrix by an arbitrary transposed matrix */
void glMultTransposeMatrixf(const GLfloat *m) {
static Matrix4x4 TEMP __attribute__((aligned(32)));
TEMP[M0] = m[0];
TEMP[M1] = m[4];
TEMP[M2] = m[8];
TEMP[M3] = m[12];
TEMP[M4] = m[1];
TEMP[M5] = m[5];
TEMP[M6] = m[9];
TEMP[M7] = m[13];
TEMP[M8] = m[3];
TEMP[M9] = m[6];
TEMP[M10] = m[10];
TEMP[M11] = m[14];
TEMP[M12] = m[4];
TEMP[M13] = m[7];
TEMP[M14] = m[11];
TEMP[M15] = m[15];
upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
multiply_matrix(&TEMP);
download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX));
2018-05-19 08:17:24 +00:00
if(MATRIX_MODE == GL_MODELVIEW) {
recalculateNormalMatrix();
}
}
/* Set the GL viewport */
void APIENTRY glViewport(GLint x, GLint y, GLsizei width, GLsizei height) {
gl_viewport_x1 = x;
gl_viewport_y1 = y;
gl_viewport_width = width;
gl_viewport_height = height;
GLfloat rw = x + width;
GLfloat lw = x;
GLfloat tw = y + height;
GLfloat bw = y;
GLfloat hw = ((GLfloat) width) / 2.0f;
GLfloat hh = ((GLfloat) height) / 2.0f;
SCREENVIEW_MATRIX[M0] = hw;
SCREENVIEW_MATRIX[M5] = -hh;
SCREENVIEW_MATRIX[M10] = 1;
SCREENVIEW_MATRIX[M12] = (rw + lw) / 2.0f;
SCREENVIEW_MATRIX[M13] = (tw + bw) / 2.0f;
}
/* Set the depth range */
void APIENTRY glDepthRangef(GLclampf n, GLclampf f) {
if(n < 0.0f) n = 0.0f;
else if(n > 1.0f) n = 1.0f;
if(f < 0.0f) f = 0.0f;
else if(f > 1.0f) f = 1.0f;
DEPTH_RANGE_MULTIPLIER_L = (f - n) / 2.0f;
DEPTH_RANGE_MULTIPLIER_H = (n + f) / 2.0f;
}
void APIENTRY glDepthRange(GLclampf n, GLclampf f){
glDepthRangef(n,f);
}
/* Vector Cross Product - Used by gluLookAt */
2018-05-20 15:16:53 +00:00
static inline void vec3f_cross(const GLfloat* v1, const GLfloat* v2, GLfloat* result) {
result[0] = v1[1] * v2[2] - v1[2] * v2[1];
result[1] = v1[2] * v2[0] - v1[0] * v2[2];
result[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
GL_FORCE_INLINE void vec3f_normalize_sh4(float *v){
float length, ilength;
ilength = MATH_fsrra(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
length = MATH_Fast_Invert(ilength);
if (length)
{
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
}
void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez, GLfloat centerx,
GLfloat centery, GLfloat centerz, GLfloat upx, GLfloat upy,
GLfloat upz) {
GLfloat m [16];
GLfloat f [3];
GLfloat u [3];
GLfloat s [3];
f[0] = centerx - eyex;
f[1] = centery - eyey;
f[2] = centerz - eyez;
u[0] = upx;
u[1] = upy;
u[2] = upz;
vec3f_normalize_sh4(f);
vec3f_cross(f, u, s);
vec3f_normalize_sh4(s);
vec3f_cross(s, f, u);
m[0] = s[0]; m[4] = s[1]; m[8] = s[2]; m[12] = 0.0f;
m[1] = u[0]; m[5] = u[1]; m[9] = u[2]; m[13] = 0.0f;
m[2] = -f[0]; m[6] = -f[1]; m[10] = -f[2]; m[14] = 0.0f;
m[3] = 0.0f; m[7] = 0.0f; m[11] = 0.0f; m[15] = 1.0f;
static Matrix4x4 trn __attribute__((aligned(32))) = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
trn[M12] = -eyex;
trn[M13] = -eyey;
trn[M14] = -eyez;
// Does not modify internal Modelview matrix
upload_matrix(&m);
multiply_matrix(&trn);
multiply_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
download_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
}
void _glApplyRenderMatrix() {
upload_matrix(&SCREENVIEW_MATRIX);
multiply_matrix(stack_top(MATRIX_STACKS + (GL_PROJECTION & 0xF)));
multiply_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
}
void _glMatrixLoadTexture() {
upload_matrix(stack_top(MATRIX_STACKS + (GL_TEXTURE & 0xF)));
}
void _glMatrixLoadModelView() {
upload_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)));
}
void _glMatrixLoadNormal() {
upload_matrix(&NORMAL_MATRIX);
}