vall-e/vall_e/models/base.py

1029 lines
32 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
import math
import torch
import torch.nn.functional as F
import traceback
import numpy as np
import re
2023-08-02 21:53:35 +00:00
from typing import Literal, overload, Optional, Tuple
2023-08-02 21:53:35 +00:00
from functools import partial
from einops import rearrange
from torch import Tensor, einsum, nn
from torch.nn import Embedding
2023-08-02 21:53:35 +00:00
from torch.distributions import Categorical
from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
from ..utils import wrapper as ml
from ..samplers import reptition_penalize, length_penalize, top_k_top_p_filtering, dynamic_temperature, top_k_logits_list, mirostat_sample
2023-08-02 21:53:35 +00:00
try:
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
except Exception as e:
print("Error importing `transformer` arch:", e)
pass
try:
#from .retnet import RetNetDecoder, RetNetConfig
from .retnet_ts import RetNetDecoder, RetNetConfig
except Exception as e:
print("Error importing `retnet` arch:", e)
pass
from .retnet_hf import RetNetDecoder as RetNetDecoder_HF, RetNetConfig as RetNetConfig_HF
"""
try:
except Exception as e:
print("Error importing `retnet-hf` arch:", e)
pass
"""
try:
from transformers import LlamaModel, LlamaConfig
except Exception as e:
print("Error importing `llama` arch:", e)
pass
try:
from transformers import MistralModel, MistralConfig
except Exception as e:
print("Error importing `mistral` arch:", e)
pass
try:
from bitnet.bit_transformer import Transformer as BitNetTransformerBlock, RMSNorm as BitNetRMSNorm
2024-05-12 12:52:54 +00:00
# override for wrapping checkpointing
def BitNetTransformerBlock_forward(self, x: Tensor, *args, **kwargs) -> Tensor:
skip = x
for attn, ffn in zip(self.layers, self.ffn_layers):
if x.requires_grad and self.activation_checkpointing:
x, _ = checkpoint(attn, x, x, x, is_causal=True, *args, **kwargs, use_reentrant=False)
else:
x, _ = attn(x, x, x, is_causal=True, *args, **kwargs)
x = x + skip
x = ffn(x) + x
return x
BitNetTransformerBlock.forward = BitNetTransformerBlock_forward
# override because bitnet's BitNetTransformer includes an embedding input / classifier output layers inside of it, which isn't favorable
class BitNetTransformer(nn.Module):
def __init__(
self,
dim: int,
depth: int,
num_tokens: int,
heads=8,
ff_mult=4,
2024-05-12 12:52:54 +00:00
activation_checkpointing = True
):
super().__init__()
self.transformer = BitNetTransformerBlock( dim=dim, depth=depth, heads=heads, ff_mult=ff_mult )
self.norm = BitNetRMSNorm(dim)
2024-05-12 12:52:54 +00:00
self.transformer.activation_checkpointing = activation_checkpointing
def forward(self, x):
x = self.transformer(x)
return self.norm( x )
"""
from bitnet import BitNetTransformer
def NoEmbedding_BitNetTransformer_Forward(self, x):
x = self.transformer(x)
return self.to_logits[0](x)
BitNetTransformer.forward = NoEmbedding_BitNetTransformer_Forward
"""
except Exception as e:
print("Error importing `bitnet` arch:", e)
pass
try:
from transformers import MixtralModel, MixtralConfig
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock
# This is required because batch sizes > 1 throws errors
def Fixed_MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_dim) # was view()
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
top_x_list = top_x.tolist()
idx_list = idx.tolist()
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
Original_MixtralSparseMoeBlock_forward = MixtralSparseMoeBlock.forward
MixtralSparseMoeBlock.forward = Fixed_MixtralSparseMoeBlock_forward
except Exception as e:
print("Error importing `mixtral` arch:", e)
AVAILABLE_ATTENTIONS = ["mem_efficient", "math"]
try:
from xformers.ops import LowerTriangularMask
from xformers.ops.fmha import memory_efficient_attention
AVAILABLE_ATTENTIONS.append("xformers")
except Exception as e:
print("Error while importing `xformers`", e)
try:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
AVAILABLE_ATTENTIONS.append("flash")
except Exception as e:
raise e
try:
from transformers.cache_utils import Cache
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
class Llama_Attention(LlamaAttention):
def __init__(self, *args, **kwargs):
if 'mode' in kwargs:
self.mode = kwargs['mode']
kwargs.pop("mode")
else:
self.mode = "math"
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
if self.mode == "xformers":
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
2024-05-11 22:34:45 +00:00
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate)
else:
2024-05-11 22:34:45 +00:00
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate)
else:
2024-05-11 22:29:01 +00:00
#torch.nn.attention.sdpa_kernel
with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
2024-05-11 22:34:45 +00:00
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate)
attn_weights = None
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
except Exception as e:
print("Error creating modified `LLamaAttention`:", e)
2023-08-02 21:53:35 +00:00
def _create_mask(l, device):
"""1 is valid region and 0 is invalid."""
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
return (seq < stop).float() # (b t)
def _join(x: tuple[Tensor], sep: Tensor):
"""
Args:
x: (k t d)
sep: (d)
"""
ret = x[0]
for i in range(1, len(x)):
ret = torch.cat((ret, sep[None], x[i]), dim=0)
return ret
def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
"""
Args:
x_list: [(t d)]
Returns:
x: (? ? ?)
m: (? ? ?), same as x
"""
l = list(map(len, x_list))
x = rearrange(pad_sequence(x_list), pattern)
m = _create_mask(l, x_list[0].device)
m = m.t().unsqueeze(-1) # (t b 1)
m = rearrange(m, pattern)
m = m.to(x)
return x, m
# automagically parses a batch-list and returns it as a list
"""
2023-08-02 21:53:35 +00:00
class Embedding(nn.Embedding):
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
if len(x_list) == 0:
return []
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
"""
2023-08-02 21:53:35 +00:00
# Deprecated implementation
class MultiEmbedding(nn.Module):
def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False):
2023-09-16 05:26:13 +00:00
super().__init__()
2023-09-08 20:36:26 +00:00
self.monolithic = monolithic
2023-08-02 21:53:35 +00:00
self.max_n_levels = max_n_levels
self.n_tokens = n_tokens
2023-09-08 20:36:26 +00:00
self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim))
2023-08-02 21:53:35 +00:00
2023-09-07 22:08:38 +00:00
# to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb)
# I imagine this is an oversight in the NAR.
def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]:
2023-08-02 21:53:35 +00:00
if len(x_list) == 0:
return []
2023-09-08 20:36:26 +00:00
# this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR
# the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb
if self.monolithic:
2023-09-08 20:36:26 +00:00
w = self.weight[:1] if quant_levels is None else self.weight[1:]
else:
w = self.weight
2023-08-02 21:53:35 +00:00
padded_x_list = []
2023-08-02 21:53:35 +00:00
2023-09-08 20:36:26 +00:00
for i, xi in enumerate(x_list):
2023-08-02 21:53:35 +00:00
xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k
wi = w.shape[0] - xi.shape[1]
xi = F.pad(xi, (0, 0, 0, wi)) # t l k
2023-08-02 21:53:35 +00:00
padded_x_list.append(xi.to(w))
x = torch.cat(padded_x_list) # n l k
x = einsum("l k d, n l k -> n d", w, x)
2023-08-02 21:53:35 +00:00
x_list = x.split([*map(len, x_list)])
return x_list
# Embedding that sums each RVQ-bin level within a given input acoustic prompt
class AudioEmbedding(nn.Module):
def __init__(
self,
l_tokens: int, # list of number of tokens (needed because AR resps includes stop token)
token_dim: int, # dimensionality of the embedding
levels: int | None = None, # number of RVQ-bins (I don't remember the specifics)
sums: bool = True # whether to sum all previous layers of embeddings to factor in other RVQ bin levels (I do not know which way is better)
):
2023-09-07 14:14:03 +00:00
super().__init__()
# array of embeddings
# proms are [0, prom_levels]
# resp are split to where [0] is for the AR, and [1:] are reserved for NAR
self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens])
# weight influencer for the influence for each level (desu this should be really useless because the weights in the embedding themselves should factor this)
self.weight = nn.ParameterList([nn.Parameter( torch.Tensor([1]) ) for i in range(levels)]) if levels is not None else None
#
self.sums = sums
2023-09-07 14:14:03 +00:00
def forward(self, xi: Tensor, quant_levels: Tensor | None = None ) -> Tensor:
# prom
if quant_levels is None and xi.shape[-1] > 1:
if self.sums:
x = sum( [ self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] )
else:
k = 0 # only use the most significant RVQ bin level for the input prom
x = self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1)
# AR resp
elif quant_levels is None or quant_levels == 0:
x = self.embeddings[0]( xi[:, 0] )
# NAR resp
else:
if self.sums:
x = sum( [ self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] )
else:
k = xi.shape[-1] - 1 # only use the previous RVQ bin level for the current resp embedding
x = self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1)
return x
2023-08-02 21:53:35 +00:00
class Base(nn.Module):
@property
def causal(self) -> bool:
raise NotImplementedError
@property
def arch_type(self) -> str:
raise NotImplementedError
@property
def norm_type(self):
raise NotImplementedError
@property
def n_prom_levels(self) -> int:
raise NotImplementedError
@property
def n_resp_levels(self) -> int:
raise NotImplementedError
@property
def n_max_levels(self) -> int:
raise NotImplementedError
2023-08-19 01:58:07 +00:00
@property
def n_langs(self) -> int:
raise NotImplementedError
2023-08-19 01:58:07 +00:00
@property
def n_tasks(self) -> int:
raise NotImplementedError
2023-08-02 21:53:35 +00:00
@property
def n_tones(self) -> int:
raise NotImplementedError
@property
def recurrent_chunk_size(self) -> int:
raise NotImplementedError
@property
def rotary_embedding_base(self) -> float:
return 10000
@property
def interleave(self) -> bool:
return False
@property
def monolithic(self) -> bool:
return False
2023-09-07 14:14:03 +00:00
@property
def version(self) -> int:
return 1
2023-09-07 14:14:03 +00:00
@property
def stop_token(self):
if not self.causal:
raise ValueError("Not using stop token!")
return self.n_tokens
@property
def ignore_index(self):
return -100
2023-08-02 21:53:35 +00:00
def __init__(
self,
2023-08-19 01:58:07 +00:00
n_tokens: int = 1024,
2023-08-02 21:53:35 +00:00
d_model: int = 512,
n_heads: int = 8,
n_layers: int = 12,
p_dropout: float = 0.1,
n_experts: int = 1,
l_padding: int = 0,
training = True,
config = None,
2023-08-02 21:53:35 +00:00
):
super().__init__()
self.training = training
self.config = config
self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True
2023-08-02 21:53:35 +00:00
self.n_tokens = n_tokens
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.n_experts = n_experts
self.l_padding = l_padding
2023-08-02 21:53:35 +00:00
# +1 to include the stop token
# to-do: undo this dogshit mistake; tasks tokens should be delegated to its own embedding
n_prom_tokens = n_tokens
n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop
2023-08-02 21:53:35 +00:00
self.text_emb = Embedding(n_tokens, d_model)
self.langs_emb = None
self.tones_emb = None
self.tasks_emb = None
if self.version == 1: # legacy
n_prom_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom
self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model)
self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic)
else:
# [1024] * 8
self.proms_emb = AudioEmbedding(
[n_prom_tokens] * self.n_prom_levels, d_model,
levels=self.n_prom_levels if self.version > 3 else None,
sums=self.config.audio_embedding_sums if self.config is not None else True,
)
# [1025] + [1024] * 8
self.resps_emb = AudioEmbedding(
[n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1), d_model,
levels=self.n_resp_levels if self.version > 3 else None,
sums=self.config.audio_embedding_sums if self.config is not None else True
)
if self.version >= 3:
self.langs_emb = Embedding(self.n_langs, d_model) if self.n_langs > 0 else None
self.tasks_emb = Embedding(self.n_tasks, d_model) if self.n_tasks > 0 else None
if self.version >= 4:
self.tones_emb = Embedding(self.n_tones, d_model) if self.n_tones > 0 else None
2023-08-02 21:53:35 +00:00
self.sep = nn.Parameter(torch.randn(d_model))
# ick, there has to be a better way
hf_attention = self.config.attention if self.config is not None else None
if self.config.attention == "auto":
if "flash" in AVAILABLE_ATTENTIONS:
self.config.attention = "flash"
elif "xformers" in AVAILABLE_ATTENTIONS:
self.config.attention = "xformers"
else:
self.config.attention = "mem_efficient"
if self.config.attention in ["xformers", "mem_efficient", "math", "flash"]:
hf_attention = None
if self.config.attention not in AVAILABLE_ATTENTIONS:
raise ValueError(f"Requesting attention `{self.config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
2023-08-02 21:53:35 +00:00
if self.arch_type == "transformer":
self.sin_emb = SinusoidalEmbedding(d_model)
self.blocks = nn.ModuleList([TransformerBlock(
d_model=d_model,
n_heads=n_heads,
p_dropout=p_dropout if training else 0.0,
2023-08-19 01:58:07 +00:00
causal=self.causal,
2023-08-02 21:53:35 +00:00
norm_type=self.norm_type,
n_levels=self.n_resp_levels,
) for _ in range(n_layers) ])
elif self.arch_type in ["mistral", "mixtral"]:
if n_experts <= 1:
self.model = MistralModel(MistralConfig(
vocab_size=n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
attn_implementation=hf_attention,
#gradient_checkpointing=self.activation_checkpointing,
))
else:
self.model = MixtralModel(MixtralConfig(
vocab_size =n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
sliding_window=75 * 12, # 12 second context window
output_router_logits=training,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
num_local_experts=n_experts,
num_experts_per_tok=min(2, n_experts),
attn_implementation=hf_attention,
#gradient_checkpointing=self.activation_checkpointing,
))
if self.activation_checkpointing and not self.model.gradient_checkpointing:
2024-05-11 21:47:19 +00:00
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
2024-05-12 13:22:39 +00:00
#if training:
# self.model.training = True
elif self.arch_type == "llama":
if n_experts <= 1:
self.model = LlamaModel(LlamaConfig(
vocab_size=n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
sliding_window=75 * 12, # 12 second context window
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
attn_implementation=hf_attention,
#gradient_checkpointing=self.activation_checkpointing,
))
else:
self.model = MixtralModel(MixtralConfig(
vocab_size =n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
sliding_window=75 * 12, # 12 second context window
output_router_logits=training,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
num_local_experts=n_experts,
num_experts_per_tok=min(2, n_experts),
attn_implementation=hf_attention,
#gradient_checkpointing=self.activation_checkpointing,
))
2024-05-10 04:15:52 +00:00
if self.activation_checkpointing and not self.model.gradient_checkpointing:
2024-05-11 21:47:19 +00:00
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
2024-05-10 04:15:52 +00:00
2024-05-12 13:22:39 +00:00
#if training:
# self.model.training = True
2023-08-02 21:53:35 +00:00
elif self.arch_type == "retnet":
kwargs = dict(
vocab_size=n_resp_tokens,
2023-08-02 21:53:35 +00:00
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
2023-08-02 21:53:35 +00:00
decoder_retention_heads=n_heads,
decoder_ffn_embed_dim=d_model * 4,
decoder_layers=n_layers,
dropout=p_dropout if training else 0.0,
checkpoint_activations=self.activation_checkpointing,
activation_fn="gelu",
use_layernorm=self.version < 3,
use_biases=self.version < 3,
use_glu=self.version >= 3,
2023-08-02 21:53:35 +00:00
chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0,
recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0,
2023-08-02 21:53:35 +00:00
no_output_layer=True,
decoder_normalize_before=True,
rotary_embedding_base=self.rotary_embedding_base, # 10000
)
if n_experts > 1:
kwargs.update(dict(
use_xmoe=True,
moe_freq=1,
moe_expert_count=n_experts,
moe_gating_use_fp32=False,
))
self.model = RetNetDecoder(RetNetConfig(**kwargs))
elif self.arch_type == "retnet-hf":
kwargs = dict(
vocab_size=n_resp_tokens,
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
decoder_retention_heads=n_heads,
decoder_ffn_embed_dim=d_model * 4,
decoder_layers=n_layers,
dropout=p_dropout if training else 0.0,
checkpoint_activations=self.activation_checkpointing,
activation_fn="gelu",
use_glu=False, # self.version >= 3,
recurrent_chunk_size=self.recurrent_chunk_size if self.causal else 0,
decoder_normalize_before=True,
deepnorm=False,
subln=True,
)
self.model = RetNetDecoder_HF(RetNetConfig_HF(**kwargs))
2024-05-12 13:22:39 +00:00
if self.activation_checkpointing and not self.model.gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
elif self.arch_type == "bitnet":
self.model = BitNetTransformer(
num_tokens=n_resp_tokens,
dim=d_model,
depth=n_layers,
heads=n_heads,
ff_mult=4,
2024-05-12 12:52:54 +00:00
activation_checkpointing=self.activation_checkpointing,
)
else:
raise RuntimeError(f'Unknown arch specified: {self.arch_type}')
2023-08-04 01:26:36 +00:00
if self.config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]:
self.model = ml.replace_attention( self.model, klass=Llama_Attention, target=LlamaAttention, mode=self.config.attention )
2023-08-02 21:53:35 +00:00
self.classifier = nn.Linear(d_model, n_resp_tokens)
self.accuracy_metric = MulticlassAccuracy(
n_resp_tokens,
top_k=10,
average="micro",
multidim_average="global",
ignore_index=self.ignore_index,
)
self.precision_metric = MulticlassPrecision(
n_resp_tokens,
top_k=10,
average="micro",
multidim_average="global",
ignore_index=self.ignore_index,
)
def _forward(
2023-08-02 21:53:35 +00:00
self,
inputs,
mask = None,
state = None,
2023-08-02 21:53:35 +00:00
):
x = inputs
m = mask.squeeze(-1).int()
aux_loss = None
"""
# Broken
if state is not None and (self.arch_type == "retnet" or self.arch_type == "retnet-hf"):
# prefill
if len(state) == 0:
prefill_size = x.shape[1]
# run the initial prompt to fill the KV cache
if self.arch_type == "retnet":
for n in range(prefill_size):
xi = x[:, n, :].unsqueeze(1)
self.model(xi, incremental_state=state, token_embeddings=xi, features_only=True)
elif self.arch_type == "retnet-hf":
state = None
for n in range(prefill_size):
xi = x[:, n, :].unsqueeze(1)
kwargs = dict(
attention_mask=m,
inputs_embeds=xi,
past_key_values=state,
use_cache=True,
forward_impl='recurrent',
# return_dict=True,
)
out = self.model(**kwargs)
state = out.past_key_values
# grab last token(s)
x = x[:, -1, :].unsqueeze(1)
"""
# HF transformer derived model
if self.arch_type in ["llama", "mistral", "mixtral"]:
kwargs = dict(
attention_mask=m,
inputs_embeds=x,
past_key_values=state,
use_cache=True,
# return_dict=True,
)
if self.n_experts > 1 and targ_list is not None:
kwargs["output_router_logits"] = True
t = self.model(**kwargs)
x = t[0]
if state is not None:
state = t[1]
if self.n_experts > 1 and targ_list is not None:
router_logits = t[-1]
aux_loss = self.model.config.router_aux_loss_coef * load_balancing_loss_func( router_logits, self.model.config.num_local_experts, self.model.config.num_experts_per_tok )
elif self.arch_type == "transformer":
2023-09-12 21:04:45 +00:00
# ensures we specify a quant_level for the transformer implementation's AdaLN
2023-09-07 14:14:03 +00:00
l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels
l = l.to(device)
2023-09-12 21:04:45 +00:00
# inject position information
x = self.sin_emb.add_pe(x)
# pass our inputs through the transformer
2023-08-02 21:53:35 +00:00
for block in self.blocks:
x = block(x, m, l)
2023-08-02 21:53:35 +00:00
elif self.arch_type == "retnet":
2023-09-12 21:04:45 +00:00
# pass our inputs through the RetNet
x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True)
if _ is not None and "l_aux" in _ and self.n_experts > 1:
aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001
elif self.arch_type == "retnet-hf":
first = state is None or len(state) == 0
kwargs = dict(
attention_mask=m,
inputs_embeds=x if first else x[:, -1, :].unsqueeze(1),
past_key_values=None if first else state,
use_cache=True,
forward_impl='parallel' if first else 'recurrent',
return_dict=True,
)
out = self.model(**kwargs)
x = out.last_hidden_state
if state is not None:
state = out.past_key_values
elif self.arch_type == "bitnet":
x = self.model(x)
2023-09-12 21:04:45 +00:00
# output projection layer with masking
x = self.classifier(x) * mask
return x, state, aux_loss
def inputs(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor],
targ_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
):
device = text_list[0].device
batch_size = len(text_list)
inputs = [ [] for _ in range(batch_size) ]
for i in range(batch_size):
if text_list is not None:
inputs[i].append( ( "text", text_list[i] ) )
if proms_list is not None:
inputs[i].append( ( "prom", proms_list[i] ) )
if resps_list is not None:
inputs[i].append( ( "resp", resps_list[i] ) )
if targ_list is not None:
inputs[i].append( ( "targ", targ_list[i] ) )
return inputs
def inputs_to_embeddings(
self,
inputs: list,
quant_levels: Tensor | None = None
):
x_list = []
for b_i in range(len(inputs)):
batch = []
for i in range(len(inputs[b_i])):
name, input = inputs[b_i][i]
embedding = None
if name == "text":
embedding = self.text_emb( input )
elif name == "lang":
embedding = self.langs_emb( input )
elif name == "prom":
embedding = self.proms_emb( input )
elif name == "tone":
embedding = self.tones_emb( input )
elif name == "resp":
embedding = self.resps_emb( input, quant_levels[b_i] if quant_levels is not None else None )
else:
continue
batch.append(embedding)
x_list.append( _join( batch, self.sep ) )
return x_list
def training_targets(
self,
inputs: list,
):
x_list = []
for bi in range(len(inputs)):
batch = []
for i in range(len(inputs[bi])):
name, input = inputs[bi][i]
device = input.device
if name == "prom":
batch.append( torch.full_like(input[..., 0], self.ignore_index) )
elif name in ["text", "lang", "tone", "targ"]:
batch.append( input )
x_list.append( _join( batch, torch.tensor(self.ignore_index, device=device) ) )
return x_list
def forward(
self,
inputs: list,
quant_levels: Tensor | None = None,
state: dict | list | None = None,
):
x_list = self.inputs_to_embeddings( inputs, quant_levels )
x, m = list_to_tensor(x_list)
# yes, there's a better way.
training = False
for b_i in range(len(inputs)):
for i in range(len(inputs[b_i])):
name, input = inputs[b_i][i]
if name == "targ":
training = True
device = x.device
batch_size = len(x_list)
# pad our input and mask, but retain the original length by doing it after
if self.l_padding and x.shape[1] % self.l_padding != 0:
# pad input
shape = list(x.shape)
shape[1] = self.l_padding - shape[1] % self.l_padding
padding = torch.zeros(shape, dtype=x.dtype, device=x.device)
x = torch.cat([x, padding], dim=1)
# pad mask
shape[2] = 1
padding = torch.zeros(shape, dtype=x.dtype, device=x.device)
m = torch.cat([m, padding], dim=1)
x, state, aux_loss = self._forward(
inputs=x,
mask=m,
state=state,
)
2023-08-02 21:53:35 +00:00
# Remove padding
logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ]
2023-08-02 21:53:35 +00:00
# compute loss if the target is given
if training:
target_list = self.training_targets( inputs )
# modify only for the AR so it can properly behave like a transformer
for i in range(len(target_list)):
if quant_levels is not None and quant_levels[i] > 0:
continue
logits[i] = logits[i][..., :-1, :] # shift the target so that token n...
target_list[i] = target_list[i][..., 1:] # predicts token n + 1
2023-08-02 21:53:35 +00:00
target = torch.cat( target_list )
inputs = torch.cat( logits )
2023-08-02 21:53:35 +00:00
self.loss = dict(
# "nll" was in the original implementation and should actually just be called something else
nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index )
2023-08-02 21:53:35 +00:00
)
self.stats = dict(
acc = self.accuracy_metric( inputs, target ),
# precision = self.precision_metric( inputs, target ),
)
if aux_loss is not None:
self.loss["nll"] += aux_loss
return (logits, state) if state is not None else logits
def sample(
self,
logits: list[Tensor],
resps_list: list[Tensor],
quant_levels: Tensor | None = None,
temperature: float = 1.0,
min_temperature: float = -1.0,
top_k: int = -100,
top_p: float = 1.0,
repetition_penalty: float = 1.0,
repetition_penalty_decay: float = 0.0,
length_penalty: float = 0.0,
beam_width: int = 0,
mirostat: list[dict] | None = None,
):
if min_temperature < 0:
min_temperature = temperature
# (NAR) return the entire generated response
if quant_levels is not None:
logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ]
# (AR chunkwise) return the last chunkwise piece
elif self.causal and self.recurrent_chunk_size > 0:
logits = [ logit[-l:] for logit, l in zip(logits, self.recurrent_chunk_size) ]
# (AR) return just the last code
2023-08-02 21:53:35 +00:00
else:
logits = [ logit[-1:] for logit in logits ]
devices = [ logit.device for logit in logits ]
logits = [ logit.to(device="cpu", dtype=logit.dtype if logit.dtype != torch.float16 else torch.float32) for logit in logits ]
# perform repetition penalizing
logits = [ reptition_penalize(logit, previous=resps[:, -1], factor=repetition_penalty, decay=repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ]
# (AR) perform length penalizing
if quant_levels is None and self.causal:
logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ]
# perform top_k/top_p filtering of our logits
if top_k > 0 or top_p < 1.0:
logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ]
# trigger dynamic temperature sampling if the minimum temperature is not the same as the sampling temperature
# epsilon float comparison because I don't trust Python
if abs(temperature - min_temperature) >= 0.001:
logits = [ dynamic_temperature(logit, temperature=temperature, min_temperature=min_temperature) for logit in logits ]
else:
logits = [ logit / temperature for logit in logits ]
# do mirostat sampling
# currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work
if mirostat is not None:
# mirostat sampling
return [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ]
# do beam search (naive implementation)
# picks the top-k across all batches, and re-batches those resultant tokens
# returns the logit scores as well to be P-concatted with the previous scores
# to-do: not naively implement beam searching
if beam_width > 1:
candidates = top_k_logits_list( logits, beam_width )
res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ]
scores = [ logits[batch].flatten()[token] for batch, token in candidates ]
return res, scores
# and sample
return [ Categorical(logits=logit).sample() for logit in logits ]