vall-e/vall_e/models/ar_nar.py

541 lines
15 KiB
Python
Raw Normal View History

2024-06-09 01:30:15 +00:00
"""
# an AR + NAR model that handles:
* inferencing the primary RVQ level in an autoregressive manner (AR)
* inferencing the remaining RVQ levels in parallel (NAR)
This model can fully handle being trained as a unified model (AR + NAR) or separate models (AR | NAR).
It's recommended to train as a unified model, then "distill" knowledge of each tasks separately, just in case.
"""
from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim
class AR_NAR(Base):
@property
def capabilities(self) -> list[str]:
2024-06-05 04:48:51 +00:00
if hasattr(self, "config") and self.config:
return self.config.capabilities
return cfg.model.capabilities
@property
def causal(self):
2024-06-09 01:30:15 +00:00
return "ar" in self.capabilities
@property
def norm_type(self):
2023-09-07 14:14:03 +00:00
return "ln" # if self.n_resp_levels == 1 else "adaln"
@property
def arch_type(self) -> str:
if hasattr(self, "config") and self.config:
return self.config.arch_type
return cfg.model.arch_type
@property
def n_prom_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.prom_levels
return cfg.model.prom_levels
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.max_levels
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tasks
return cfg.model.tasks
@property
def n_langs(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.langs
return cfg.model.langs
@property
def n_tones(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tones
return cfg.model.tones
@property
2024-06-07 01:51:31 +00:00
def causal_size(self) -> int:
# 1 for the stop token
# governs how much to shift the logits by
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
2024-06-07 01:55:27 +00:00
return 1 # if self.causal else 0
@property
def interleave(self) -> bool:
return False
@property
def monolithic(self) -> bool:
return True
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
max_steps: int = 1000,
max_levels: int = 0,
max_resp_context: int = -1,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
):
device = text_list[0].device
batch_size = len(text_list)
# is training or NAR
if resps_list is not None:
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
# is training
if n_levels == self.n_resp_levels:
# to-do: make this YAML configurable
def sample_task():
2024-06-09 01:30:15 +00:00
return "tts"
# generate task list to train against
task_list = [ sample_task() for _ in range(batch_size) ]
# determines which RVQ level to target per batch
quant_level_range = [ 0 if self.causal else 1, self.n_resp_levels ]
2024-05-05 03:37:22 +00:00
if cfg.experimental:
# makes higher levels less likely
def generate( lo=0, hi=8 ):
index = lo
p = random.random()
for i in range(lo, hi):
if p < 1.0 / (2 ** i):
index = i
return int(index)
2024-06-09 01:30:15 +00:00
quant_levels = [ generate(quant_level_range[0], quant_level_range[1]) for i in range(batch_size) ]
else:
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
2024-06-09 01:30:15 +00:00
quant_levels = [ random.randint(quant_level_range[0], quant_level_range[1]) for i in range(batch_size) ]
resps_list = [r[..., 0] if l == 0 else r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
# append stop tokens for AR
# could technically do it in the .inputs call
2024-06-09 01:30:15 +00:00
for i in range(batch_size):
# only apply stop token for RVQ level 0
if quant_levels[i] > 0:
continue
resps_list[i] = torch.cat([resps_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ])
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
2023-10-12 02:21:50 +00:00
lang_list=lang_list,
tone_list=tone_list,
task_list=task_list,
quant_levels=quant_levels,
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
# is NAR
if max_levels == 0:
max_levels = self.n_resp_levels - 1
# expand if given a raw 1D tensor
for i, resp in enumerate(resps_list):
if resp.dim() == 1:
resps_list[i] = resp.unsqueeze(-1)
prev_list = resps_list
for n in trange( max_levels, desc="NAR" ):
2023-09-08 20:36:26 +00:00
level = prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
2023-10-12 02:21:50 +00:00
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
logits = super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
resps_list = super().sample(
logits=logits,
resps_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
# is AR
sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in range(batch_size) ]
stopped = torch.zeros(batch_size, device=device).bool()
2024-06-09 01:30:15 +00:00
stop_token = self.stop_token
task_list = [ "tts" for _ in range(batch_size) ]
recurrent_state = [] if cfg.inference.recurrent_forward else None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
scores = [ 1.0 ] * sampling_beam_width
if self.interleave:
max_steps *= self.n_prom_levels
# get next in sequence
2024-06-07 01:51:31 +00:00
for n in trange(max_steps // max(1, self.causal_size), desc="AR"):
# experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this.
# UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2
if max_resp_context > 0:
resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] )
else:
resps_list = self._unsqueeze_list(sequence_list)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
task_list=task_list,
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
)
if recurrent_state is not None:
logits, recurrent_state = super().forward(
inputs=inputs,
state=recurrent_state,
)
else:
logits = super().forward(
inputs=inputs,
state=recurrent_state,
)
r = super().sample(
logits=logits,
resps_list=resps_list,
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
)
if mirostat is not None:
# r is the state
mirostat = r
# extract token from state
r = [ state["token"] for state in mirostat ]
# we do it here because the sampler will already expand our logits list
elif sampling_beam_width > 0:
# expand tuple
r, s = r
# first step, expand batch
if batch_size == 1:
batch_size = sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
# append tokens
for i, ri in enumerate(r):
if stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == stop_token
if stopped.all().item():
break
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width:
sequence_list = [ sequence_list[0] ]
sequence_list = [self._prune(r, stop_token) for r in sequence_list]
return sequence_list
def example_usage():
cfg.trainer.backend = "local"
2024-04-21 19:58:04 +00:00
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_000
2024-04-21 19:58:04 +00:00
from functools import partial
from einops import repeat
2024-04-21 19:58:04 +00:00
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
2023-09-07 22:08:38 +00:00
from ..utils import wrapper as ml
2024-04-21 19:58:04 +00:00
import numpy as np
import re
device = "cuda"
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
"""
if "mamba" in cfg.model.arch_type:
cfg.model.prom_levels = 1
cfg.model.resp_levels = 1
"""
2024-06-05 04:48:51 +00:00
# cfg.model.loss_factors = {}
2024-04-21 19:58:04 +00:00
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
2024-04-21 19:58:04 +00:00
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16)
2024-04-21 19:58:04 +00:00
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
2024-04-21 19:58:04 +00:00
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
]
proms_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resps_list = [
qnt[:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
2024-03-02 02:38:06 +00:00
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_text_tokens': 256,
'n_audio_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
model = AR_NAR(**kwargs).to(device)
2024-06-05 04:48:51 +00:00
steps = 200
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
2023-09-07 14:14:03 +00:00
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
print("Scheduler:", scheduler)
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
engine = Engine(model=model, optimizer=optimizer)
2024-06-07 01:51:31 +00:00
"""
torch.save( {
'module': model.state_dict()
2024-06-04 05:07:00 +00:00
}, f"./data/{cfg.model.arch_type}.pth" )
2024-06-07 01:51:31 +00:00
"""
2023-09-07 14:14:03 +00:00
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.inference_mode()
def sample( name, steps=1000 ):
if cfg.audio_backend == "dac" and name == "init":
return
engine.eval()
2024-06-09 01:30:15 +00:00
if "ar" in cfg.model.capabilities:
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
2024-06-05 04:48:51 +00:00
else:
2024-06-09 01:30:15 +00:00
resps_list = [ qnt[:, 0].to( device ) ]
2024-06-05 04:48:51 +00:00
2024-06-09 01:30:15 +00:00
if "nar" in cfg.model.capabilities:
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
2023-09-07 22:08:38 +00:00
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
2024-06-07 01:51:31 +00:00
"""
torch.save( {
'module': model.state_dict()
2024-06-04 05:07:00 +00:00
}, f"./data/{cfg.model.arch_type}.pth" )
2024-06-07 01:51:31 +00:00
"""
2024-06-05 04:48:51 +00:00
#sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
2024-06-06 01:30:43 +00:00
example_usage()