Commit Graph

353 Commits

Author SHA1 Message Date
mrq
9cb0b6901b unified nar.py into ar_nar.py 2024-11-10 12:19:48 -06:00
mrq
a9d2faf2d7 all I can do now until I wait for the model to (re)train for pure NAR 2024-11-09 22:57:34 -06:00
mrq
ad7e290a5e ugh (ROCm seems to silently clamp any token value >= logits.shape[-1] for loss calculation, while cuda will throw an assert, making it hard to find this dumb fuckup) 2024-11-09 19:40:02 -06:00
mrq
943fe70c10 I don't know why this fixes an assert thrown but it does 2024-11-09 19:04:13 -06:00
mrq
f50d92ba6c Almost made a mistake 2024-11-09 18:12:54 -06:00
mrq
c6a38693a2 This better work 2024-11-09 18:04:59 -06:00
mrq
8b3d1cf70a Something's Wrong 2024-11-09 15:07:43 -06:00
mrq
dcd5fecff3 some cleanup while I wait for the NAR-len to train to an acceptable state (currently it performs okay, but only on audo after 3 seconds or so) 2024-11-09 12:12:46 -06:00
mrq
69b0b3b854 set timestep tensor to whatever the time embedding's dtype is because it'll gripe under amp 2024-11-09 00:11:16 -06:00
mrq
5a09a5f6e9 I forgot about the time embedding... 2024-11-08 22:46:26 -06:00
mrq
811b15d280 I suppose I just have a shit training method since the sampler is as solid as I can get it............... 2024-11-08 22:05:41 -06:00
mrq
13b54953bd agony 2024-11-08 13:34:39 -06:00
mrq
c127c4e488 'borrowed' a sampling scheduler for NAR-len's RVQ level 0 (better than before, but still not good enough) 2024-11-07 21:19:14 -06:00
mrq
e108c54daf new NAR-len training paradigm...... 2024-11-07 11:32:11 -06:00
mrq
ed174c589e ugh 2024-11-07 09:19:21 -06:00
mrq
d13ab00ad8 one more note 2024-11-07 09:11:21 -06:00
mrq
5698188824 あたしって、ほんとバカ 2024-11-07 09:10:18 -06:00
mrq
77ff23e319 repeat extend the prom to fill the initial tokens for nar-len (it somewhat works, the model just needs to train more) 2024-11-06 23:29:53 -06:00
mrq
105ed51159 I guess I'll fall for the NAR-len meme again (I don't know where my previous weights are, so I need to train it again to test something) 2024-11-06 19:17:12 -06:00
mrq
aefe8fcdad UGH 2024-11-05 22:13:58 -06:00
mrq
9e65e05e83 more windows specific fixes, limit gradio to <5.0.0 on linux (it works on windows, but not on my linux machine tm) 2024-11-04 18:00:33 -06:00
mrq
c83670c38c Windows specific fixes (to-do: find libespeak-ng.dll automatically because it cannot be trusted to do it by default) 2024-11-03 19:19:15 -06:00
mrq
d229725c76 more adjustments (adjustments of early-exit entropy/varentropy thresholds, default rep pen being 1.5, experimental refine-on-stop, etc.) 2024-11-03 18:31:28 -06:00
mrq
aee08b7307 changed layerskip float16 training warning (since it didnt seem to fry on my 4xV100 system) 2024-11-03 09:58:29 -06:00
mrq
3826f9bae4 saner mask creation? (it doesnt matter, kv cache wont work) 2024-11-02 21:00:21 -05:00
mrq
ded746e157 very, very naive layerskip speculative sampling (it just checks if the current layer's state is good enough) 2024-11-02 11:49:05 -05:00
mrq
ec79230965 shuffled web UI options hidden by cfg.experimental to its own tab, expose early exit selection to inferencing (it kinda works naively, still need to implement self-speculation) 2024-11-01 21:30:06 -05:00
mrq
fb8faa295b actually float16(+AMP) and layerskip is bad and will kill the model...... 2024-11-01 18:36:44 -05:00
mrq
9b6c57bc57 third time's the charm (for some reason it escaped me that I should treat early exit loss as an aux_loss to be used with the normal loss, as if I was training a MoE's router) 2024-11-01 12:50:37 -05:00
mrq
76ebef45dc off-by-one... 2024-10-31 13:24:48 -05:00
mrq
b63293cbbe ugh 2024-10-30 22:49:11 -05:00
mrq
a22534e8f4 layer skip training implemented (need to gut the inferencing from the repo, and to actually see if the model can benefit from this) 2024-10-30 20:05:45 -05:00
mrq
ccf71dc1b6 added option to load from a model state dict directly instead of a yaml (to-do: do this for LoRAs too), automatically download the default model if none is provided 2024-10-25 22:15:15 -05:00
mrq
a96f5aee32 adjusted how i want to pass eval kwargs 2024-10-25 20:38:09 -05:00
mrq
92e6bff6dc actually ar temp 0.5 with rep pen 1.125 seems to have the benefits of better outputs without it degrading some of the time but not all the time 2024-10-23 00:03:35 -05:00
mrq
8920e5e86b actually have beam_width in the webUI work 2024-10-22 22:06:22 -05:00
mrq
910571ad34 too brainlet to diagnose why low temp / greedy sampling is randomly unstable some of the time 2024-10-22 20:13:54 -05:00
mrq
8eb9a4056b modified default arguments (ar temp = 0 and rep pen = 1.125 seems to be stable, at least given the few things i tested), do not pass top k/top p/min p to NAR even though technically none of those things should matter when greedy sampling 2024-10-22 18:12:39 -05:00
mrq
1a02cd5bce modify demo template to say F5 instead of YourTTS, swap LoRA comparison around to make the lora'd the base file, and the no-lora the suffix'd file 2024-10-21 19:52:02 -05:00
mrq
71731ed785 added prefixing with silence (was to test something, currently hidden under cfg.experimental=True) 2024-10-18 17:19:52 -05:00
mrq
fc8dfd8617 made greedy AR sampling viable (and preferable), with caveats (per comment in vall_e.models.ar_nar) 2024-10-18 16:55:00 -05:00
mrq
75b90be325 cleaned up unused config flags, allow less strict yaml by pruning missing keys, renamed some dataset configs to be more unified 2024-10-17 17:06:48 -05:00
mrq
84005c5b00 entropix apparently processes the entire sequence of logits but it falls apart when doing that 2024-10-13 12:01:12 -05:00
mrq
c800d28bb8 respect attention defined in the yaml for web UI (which might explain why theres been a discrepancy in outputs for me) 2024-10-13 11:02:24 -05:00
mrq
ed6b7a690f ugh......... 2024-10-13 00:26:46 -05:00
mrq
d405f243d4 at wits end in trying to output the right attention scores 2024-10-12 23:53:13 -05:00
mrq
70cf694cfd output attention scores for SDPA/flash, since naive attention seems broken 2024-10-12 12:09:17 -05:00
mrq
04e983b86b modified demo page to be more modular with demoing comparisons, actually provide a path to use modified naive attention, entropix sampling is not tied to an experimental yaml flag now 2024-10-12 11:27:55 -05:00
mrq
666e8038fb ugh 2024-10-12 10:41:35 -05:00
mrq
3d6ef9666b overridden naive llama attention to get the right score values that entropix needs 2024-10-12 10:05:47 -05:00
mrq
d6f7c86a5c entropix tweaks (it doesn't output garbage but it loves to go for silence) 2024-10-12 09:46:18 -05:00
mrq
d0ab7d755a added min-p (really does not seem useful since it's very sensitive), more tweaks to entropix 2024-10-11 22:36:06 -05:00
mrq
bef43a0c18 added experimental entropix sampling support 2024-10-11 21:18:26 -05:00
mrq
75a4c866d6 more demo page tweaks, added arg to force enable/disable LoRAs for inferencing (to-do: setup arg flags to handle this, and checkbox in web UI) 2024-10-10 19:04:12 -05:00
mrq
2ea978f318 added --eval-random-text-prompts to use random text prompts for eval pass, added --random-prompts for demo page and --lora to use a sample with the lora disabled, probably finally fixed validation dataloader breaking on eval 2024-10-10 13:40:25 -05:00
mrq
acdce66d4e readme tweaks, set the (unused) default model download URL back to the base ar+nar-llama-8 model, as ar+nar-tts+stt-llama-8 was renamed back to it since it performs well 2024-10-05 22:53:53 -05:00
mrq
84c7419001 faster 2024-10-04 22:30:47 -05:00
mrq
a507b769a1 sped up inferencing by not doing .tolist() for rep pen / length pen (and a bug fix in the web UI from prev commit) 2024-10-04 22:18:20 -05:00
mrq
4a8e3ccf06 README tweaks, added --input-prompt-prefix as an experiment (its literally better to just not do this, but i'll retain it in case i have a revelation on how to improve it) 2024-10-04 18:57:19 -05:00
mrq
31e8b7edb8 tweaks and fixes for lora stuffs 2024-09-08 18:05:21 -05:00
mrq
54203c059d validated rep pen for STT (sometimes needed to wrangle the model) 2024-09-08 08:30:30 -05:00
mrq
6a967f91b9 oops 2024-09-07 22:13:49 -05:00
mrq
4bd9bb39c8 webui for STT (still need to bake the model to handle it better, a few hours so far has it generate what looks like a normal transcription but does not correlate to the audio right now) 2024-09-06 15:13:04 -05:00
mrq
d33a906119 cleanup for AR_NAR inferencing to allow both TTS and STT tasks simultaneously (need to have training eval do this to though) 2024-09-06 14:30:12 -05:00
mrq
341e19162b fixes, again 2024-09-06 11:41:41 -05:00
mrq
94cf81d38c tweak 2024-09-05 23:21:18 -05:00
mrq
413097f5f7 fixes 2024-09-05 21:42:59 -05:00
mrq
54547b74d8 experimental implementation of STT (need to actually test on a model, test trainer seems to work) 2024-09-05 20:43:20 -05:00
mrq
168e203942 ugh 2024-08-30 14:39:07 -05:00
mrq
685f4faec0 ugh 2024-08-30 10:46:26 -05:00
mrq
32287710a2 moved prints to use logger, edited readme (fused_attn doesnt seem stable for training) 2024-08-29 13:27:16 -05:00
mrq
d423bc03c2 fixed attentions for MoE 2024-08-27 17:02:42 -05:00
mrq
b7b99a25f1 added ability to specify attention backend for CLI and webui (because im tired of editing the yaml) 2024-08-26 19:33:51 -05:00
mrq
0d706ec6a1 added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm 2024-08-26 19:13:34 -05:00
mrq
6b0891448c pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good) 2024-08-25 20:07:27 -05:00
mrq
40e1799adc fixed xformers and flash_attn to actually work now 2024-08-19 01:03:35 -05:00
mrq
29c35528e5 the sooner I accept there's no FA for V100s the sooner I'll go to bed 2024-08-18 23:54:33 -05:00
mrq
d636edd3a2 added flash_attn LlamaAttention (including flash_attn==1.0.9) 2024-08-18 20:51:14 -05:00
mrq
2a1794c084 ughghghhhh 2024-08-09 21:15:01 -05:00
mrq
ed373957e2 maybe not 2024-08-09 11:38:08 -05:00
mrq
d04f6911b4 oops 2024-08-08 19:38:55 -05:00
mrq
949339a3fa do not include SDPA attention if there's no available SDPA backends 2024-08-06 20:42:39 -05:00
mrq
7cdfa3dc0c updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup 2024-08-05 15:59:25 -05:00
mrq
debcc93e7e add adapted MixtralAttention for when I make a bad decision to actually train a MoE 2024-08-04 22:03:22 -05:00
mrq
10aaf840e7 added export option to convert Llama to MixtralMoE for another dumb experiment 2024-08-04 20:25:06 -05:00
mrq
3a65cc4b22 fix issue with sft and shared tensors... 2024-08-04 19:56:21 -05:00
mrq
23f3b56fda oops 2024-08-04 08:18:57 -05:00
mrq
6a733eb2ed changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful 2024-08-03 22:10:21 -05:00
mrq
d0a5c7eca2 more coping with the NAR len 2024-08-03 20:23:36 -05:00
mrq
11fa3da665 some cleanup, fixed the wrapper attention to explicitly use other sdpa backends 2024-08-03 19:51:00 -05:00
mrq
9564ecda43 wrapper attention class for other sdpa backends + xformers seems to have broke... 2024-08-03 15:12:11 -05:00
mrq
9e1989be1b tweaked initial NAR pass's initial token embeddings to use a different value, or osmething 2024-08-03 09:01:37 -05:00
mrq
26f74c5739 somehow fixed non-unified position IDs for the NAR-len 2024-08-03 08:43:42 -05:00
mrq
66407e5bdb tweaks for the NAR-len model, maybe 2024-08-03 08:40:39 -05:00
mrq
97c5241bef fixes, throw an exception when using NAR only model with non-unified position IDs, since for some reason it outputs garbage for the NAR 2024-08-02 22:25:49 -05:00
mrq
443422ecb5 ugh, finally got some form of offloading working (need to test if it works on different GPUs, but GPU and CPU offloading seems to work in the test trainer) 2024-08-01 22:43:39 -05:00
mrq
c9ec6b28ef it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
mrq
b4c895114c naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there) 2024-08-01 20:12:06 -05:00
mrq
387358bc8a fixes for the NAR-len model, and documentation some config options, and a better way to handle resizing modules on state_dict load 2024-07-31 20:35:09 -05:00
mrq
07f8e2ad06 added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight) 2024-07-30 20:53:51 -05:00