|
9cb0b6901b
|
unified nar.py into ar_nar.py
|
2024-11-10 12:19:48 -06:00 |
|
|
a9d2faf2d7
|
all I can do now until I wait for the model to (re)train for pure NAR
|
2024-11-09 22:57:34 -06:00 |
|
|
ad7e290a5e
|
ugh (ROCm seems to silently clamp any token value >= logits.shape[-1] for loss calculation, while cuda will throw an assert, making it hard to find this dumb fuckup)
|
2024-11-09 19:40:02 -06:00 |
|
|
943fe70c10
|
I don't know why this fixes an assert thrown but it does
|
2024-11-09 19:04:13 -06:00 |
|
|
f50d92ba6c
|
Almost made a mistake
|
2024-11-09 18:12:54 -06:00 |
|
|
c6a38693a2
|
This better work
|
2024-11-09 18:04:59 -06:00 |
|
|
8b3d1cf70a
|
Something's Wrong
|
2024-11-09 15:07:43 -06:00 |
|
|
dcd5fecff3
|
some cleanup while I wait for the NAR-len to train to an acceptable state (currently it performs okay, but only on audo after 3 seconds or so)
|
2024-11-09 12:12:46 -06:00 |
|
|
69b0b3b854
|
set timestep tensor to whatever the time embedding's dtype is because it'll gripe under amp
|
2024-11-09 00:11:16 -06:00 |
|
|
5a09a5f6e9
|
I forgot about the time embedding...
|
2024-11-08 22:46:26 -06:00 |
|
|
811b15d280
|
I suppose I just have a shit training method since the sampler is as solid as I can get it...............
|
2024-11-08 22:05:41 -06:00 |
|
|
13b54953bd
|
agony
|
2024-11-08 13:34:39 -06:00 |
|
|
c127c4e488
|
'borrowed' a sampling scheduler for NAR-len's RVQ level 0 (better than before, but still not good enough)
|
2024-11-07 21:19:14 -06:00 |
|
|
e108c54daf
|
new NAR-len training paradigm......
|
2024-11-07 11:32:11 -06:00 |
|
|
ed174c589e
|
ugh
|
2024-11-07 09:19:21 -06:00 |
|
|
d13ab00ad8
|
one more note
|
2024-11-07 09:11:21 -06:00 |
|
|
5698188824
|
あたしって、ほんとバカ
|
2024-11-07 09:10:18 -06:00 |
|
|
77ff23e319
|
repeat extend the prom to fill the initial tokens for nar-len (it somewhat works, the model just needs to train more)
|
2024-11-06 23:29:53 -06:00 |
|
|
105ed51159
|
I guess I'll fall for the NAR-len meme again (I don't know where my previous weights are, so I need to train it again to test something)
|
2024-11-06 19:17:12 -06:00 |
|
|
aefe8fcdad
|
UGH
|
2024-11-05 22:13:58 -06:00 |
|
|
9e65e05e83
|
more windows specific fixes, limit gradio to <5.0.0 on linux (it works on windows, but not on my linux machine tm)
|
2024-11-04 18:00:33 -06:00 |
|
|
c83670c38c
|
Windows specific fixes (to-do: find libespeak-ng.dll automatically because it cannot be trusted to do it by default)
|
2024-11-03 19:19:15 -06:00 |
|
|
d229725c76
|
more adjustments (adjustments of early-exit entropy/varentropy thresholds, default rep pen being 1.5, experimental refine-on-stop, etc.)
|
2024-11-03 18:31:28 -06:00 |
|
|
aee08b7307
|
changed layerskip float16 training warning (since it didnt seem to fry on my 4xV100 system)
|
2024-11-03 09:58:29 -06:00 |
|
|
3826f9bae4
|
saner mask creation? (it doesnt matter, kv cache wont work)
|
2024-11-02 21:00:21 -05:00 |
|
|
ded746e157
|
very, very naive layerskip speculative sampling (it just checks if the current layer's state is good enough)
|
2024-11-02 11:49:05 -05:00 |
|
|
ec79230965
|
shuffled web UI options hidden by cfg.experimental to its own tab, expose early exit selection to inferencing (it kinda works naively, still need to implement self-speculation)
|
2024-11-01 21:30:06 -05:00 |
|
|
fb8faa295b
|
actually float16(+AMP) and layerskip is bad and will kill the model......
|
2024-11-01 18:36:44 -05:00 |
|
|
9b6c57bc57
|
third time's the charm (for some reason it escaped me that I should treat early exit loss as an aux_loss to be used with the normal loss, as if I was training a MoE's router)
|
2024-11-01 12:50:37 -05:00 |
|
|
76ebef45dc
|
off-by-one...
|
2024-10-31 13:24:48 -05:00 |
|
|
b63293cbbe
|
ugh
|
2024-10-30 22:49:11 -05:00 |
|
|
a22534e8f4
|
layer skip training implemented (need to gut the inferencing from the repo, and to actually see if the model can benefit from this)
|
2024-10-30 20:05:45 -05:00 |
|
|
ccf71dc1b6
|
added option to load from a model state dict directly instead of a yaml (to-do: do this for LoRAs too), automatically download the default model if none is provided
|
2024-10-25 22:15:15 -05:00 |
|
|
a96f5aee32
|
adjusted how i want to pass eval kwargs
|
2024-10-25 20:38:09 -05:00 |
|
|
92e6bff6dc
|
actually ar temp 0.5 with rep pen 1.125 seems to have the benefits of better outputs without it degrading some of the time but not all the time
|
2024-10-23 00:03:35 -05:00 |
|
|
8920e5e86b
|
actually have beam_width in the webUI work
|
2024-10-22 22:06:22 -05:00 |
|
|
910571ad34
|
too brainlet to diagnose why low temp / greedy sampling is randomly unstable some of the time
|
2024-10-22 20:13:54 -05:00 |
|
|
8eb9a4056b
|
modified default arguments (ar temp = 0 and rep pen = 1.125 seems to be stable, at least given the few things i tested), do not pass top k/top p/min p to NAR even though technically none of those things should matter when greedy sampling
|
2024-10-22 18:12:39 -05:00 |
|
|
1a02cd5bce
|
modify demo template to say F5 instead of YourTTS, swap LoRA comparison around to make the lora'd the base file, and the no-lora the suffix'd file
|
2024-10-21 19:52:02 -05:00 |
|
|
71731ed785
|
added prefixing with silence (was to test something, currently hidden under cfg.experimental=True)
|
2024-10-18 17:19:52 -05:00 |
|
|
fc8dfd8617
|
made greedy AR sampling viable (and preferable), with caveats (per comment in vall_e.models.ar_nar)
|
2024-10-18 16:55:00 -05:00 |
|
|
75b90be325
|
cleaned up unused config flags, allow less strict yaml by pruning missing keys, renamed some dataset configs to be more unified
|
2024-10-17 17:06:48 -05:00 |
|
|
84005c5b00
|
entropix apparently processes the entire sequence of logits but it falls apart when doing that
|
2024-10-13 12:01:12 -05:00 |
|
|
c800d28bb8
|
respect attention defined in the yaml for web UI (which might explain why theres been a discrepancy in outputs for me)
|
2024-10-13 11:02:24 -05:00 |
|
|
ed6b7a690f
|
ugh.........
|
2024-10-13 00:26:46 -05:00 |
|
|
d405f243d4
|
at wits end in trying to output the right attention scores
|
2024-10-12 23:53:13 -05:00 |
|
|
70cf694cfd
|
output attention scores for SDPA/flash, since naive attention seems broken
|
2024-10-12 12:09:17 -05:00 |
|
|
04e983b86b
|
modified demo page to be more modular with demoing comparisons, actually provide a path to use modified naive attention, entropix sampling is not tied to an experimental yaml flag now
|
2024-10-12 11:27:55 -05:00 |
|
|
666e8038fb
|
ugh
|
2024-10-12 10:41:35 -05:00 |
|
|
3d6ef9666b
|
overridden naive llama attention to get the right score values that entropix needs
|
2024-10-12 10:05:47 -05:00 |
|
|
d6f7c86a5c
|
entropix tweaks (it doesn't output garbage but it loves to go for silence)
|
2024-10-12 09:46:18 -05:00 |
|
|
d0ab7d755a
|
added min-p (really does not seem useful since it's very sensitive), more tweaks to entropix
|
2024-10-11 22:36:06 -05:00 |
|
|
bef43a0c18
|
added experimental entropix sampling support
|
2024-10-11 21:18:26 -05:00 |
|
|
75a4c866d6
|
more demo page tweaks, added arg to force enable/disable LoRAs for inferencing (to-do: setup arg flags to handle this, and checkbox in web UI)
|
2024-10-10 19:04:12 -05:00 |
|
|
2ea978f318
|
added --eval-random-text-prompts to use random text prompts for eval pass, added --random-prompts for demo page and --lora to use a sample with the lora disabled, probably finally fixed validation dataloader breaking on eval
|
2024-10-10 13:40:25 -05:00 |
|
|
acdce66d4e
|
readme tweaks, set the (unused) default model download URL back to the base ar+nar-llama-8 model, as ar+nar-tts+stt-llama-8 was renamed back to it since it performs well
|
2024-10-05 22:53:53 -05:00 |
|
|
84c7419001
|
faster
|
2024-10-04 22:30:47 -05:00 |
|
|
a507b769a1
|
sped up inferencing by not doing .tolist() for rep pen / length pen (and a bug fix in the web UI from prev commit)
|
2024-10-04 22:18:20 -05:00 |
|
|
4a8e3ccf06
|
README tweaks, added --input-prompt-prefix as an experiment (its literally better to just not do this, but i'll retain it in case i have a revelation on how to improve it)
|
2024-10-04 18:57:19 -05:00 |
|
|
31e8b7edb8
|
tweaks and fixes for lora stuffs
|
2024-09-08 18:05:21 -05:00 |
|
|
54203c059d
|
validated rep pen for STT (sometimes needed to wrangle the model)
|
2024-09-08 08:30:30 -05:00 |
|
|
6a967f91b9
|
oops
|
2024-09-07 22:13:49 -05:00 |
|
|
4bd9bb39c8
|
webui for STT (still need to bake the model to handle it better, a few hours so far has it generate what looks like a normal transcription but does not correlate to the audio right now)
|
2024-09-06 15:13:04 -05:00 |
|
|
d33a906119
|
cleanup for AR_NAR inferencing to allow both TTS and STT tasks simultaneously (need to have training eval do this to though)
|
2024-09-06 14:30:12 -05:00 |
|
|
341e19162b
|
fixes, again
|
2024-09-06 11:41:41 -05:00 |
|
|
94cf81d38c
|
tweak
|
2024-09-05 23:21:18 -05:00 |
|
|
413097f5f7
|
fixes
|
2024-09-05 21:42:59 -05:00 |
|
|
54547b74d8
|
experimental implementation of STT (need to actually test on a model, test trainer seems to work)
|
2024-09-05 20:43:20 -05:00 |
|
|
168e203942
|
ugh
|
2024-08-30 14:39:07 -05:00 |
|
|
685f4faec0
|
ugh
|
2024-08-30 10:46:26 -05:00 |
|
|
32287710a2
|
moved prints to use logger, edited readme (fused_attn doesnt seem stable for training)
|
2024-08-29 13:27:16 -05:00 |
|
|
d423bc03c2
|
fixed attentions for MoE
|
2024-08-27 17:02:42 -05:00 |
|
|
b7b99a25f1
|
added ability to specify attention backend for CLI and webui (because im tired of editing the yaml)
|
2024-08-26 19:33:51 -05:00 |
|
|
0d706ec6a1
|
added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm
|
2024-08-26 19:13:34 -05:00 |
|
|
6b0891448c
|
pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good)
|
2024-08-25 20:07:27 -05:00 |
|
|
40e1799adc
|
fixed xformers and flash_attn to actually work now
|
2024-08-19 01:03:35 -05:00 |
|
|
29c35528e5
|
the sooner I accept there's no FA for V100s the sooner I'll go to bed
|
2024-08-18 23:54:33 -05:00 |
|
|
d636edd3a2
|
added flash_attn LlamaAttention (including flash_attn==1.0.9)
|
2024-08-18 20:51:14 -05:00 |
|
|
2a1794c084
|
ughghghhhh
|
2024-08-09 21:15:01 -05:00 |
|
|
ed373957e2
|
maybe not
|
2024-08-09 11:38:08 -05:00 |
|
|
d04f6911b4
|
oops
|
2024-08-08 19:38:55 -05:00 |
|
|
949339a3fa
|
do not include SDPA attention if there's no available SDPA backends
|
2024-08-06 20:42:39 -05:00 |
|
|
7cdfa3dc0c
|
updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup
|
2024-08-05 15:59:25 -05:00 |
|
|
debcc93e7e
|
add adapted MixtralAttention for when I make a bad decision to actually train a MoE
|
2024-08-04 22:03:22 -05:00 |
|
|
10aaf840e7
|
added export option to convert Llama to MixtralMoE for another dumb experiment
|
2024-08-04 20:25:06 -05:00 |
|
|
3a65cc4b22
|
fix issue with sft and shared tensors...
|
2024-08-04 19:56:21 -05:00 |
|
|
23f3b56fda
|
oops
|
2024-08-04 08:18:57 -05:00 |
|
|
6a733eb2ed
|
changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful
|
2024-08-03 22:10:21 -05:00 |
|
|
d0a5c7eca2
|
more coping with the NAR len
|
2024-08-03 20:23:36 -05:00 |
|
|
11fa3da665
|
some cleanup, fixed the wrapper attention to explicitly use other sdpa backends
|
2024-08-03 19:51:00 -05:00 |
|
|
9564ecda43
|
wrapper attention class for other sdpa backends + xformers seems to have broke...
|
2024-08-03 15:12:11 -05:00 |
|
|
9e1989be1b
|
tweaked initial NAR pass's initial token embeddings to use a different value, or osmething
|
2024-08-03 09:01:37 -05:00 |
|
|
26f74c5739
|
somehow fixed non-unified position IDs for the NAR-len
|
2024-08-03 08:43:42 -05:00 |
|
|
66407e5bdb
|
tweaks for the NAR-len model, maybe
|
2024-08-03 08:40:39 -05:00 |
|
|
97c5241bef
|
fixes, throw an exception when using NAR only model with non-unified position IDs, since for some reason it outputs garbage for the NAR
|
2024-08-02 22:25:49 -05:00 |
|
|
443422ecb5
|
ugh, finally got some form of offloading working (need to test if it works on different GPUs, but GPU and CPU offloading seems to work in the test trainer)
|
2024-08-01 22:43:39 -05:00 |
|
|
c9ec6b28ef
|
it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py)
|
2024-08-01 20:56:28 -05:00 |
|
|
b4c895114c
|
naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there)
|
2024-08-01 20:12:06 -05:00 |
|
|
387358bc8a
|
fixes for the NAR-len model, and documentation some config options, and a better way to handle resizing modules on state_dict load
|
2024-07-31 20:35:09 -05:00 |
|
|
07f8e2ad06
|
added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight)
|
2024-07-30 20:53:51 -05:00 |
|