bitsandbytes-rocm/bitsandbytes/functional.py

2366 lines
77 KiB
Python
Raw Normal View History

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
2021-10-06 02:16:20 +00:00
# LICENSE file in the root directory of this source tree.
import ctypes as ct
2022-11-17 14:22:29 +00:00
import itertools
import operator
2021-10-06 02:16:20 +00:00
import random
import torch
2022-11-04 02:49:50 +00:00
import itertools
2022-11-19 15:24:03 +00:00
import math
2023-04-02 21:09:08 +00:00
from scipy.stats import norm
2023-03-30 01:41:37 +00:00
import numpy as np
2022-10-27 11:15:21 +00:00
from functools import reduce # Required in Python 3
from typing import Tuple
2021-10-06 02:16:20 +00:00
from torch import Tensor
from .cextension import COMPILED_WITH_CUDA, lib
2022-10-27 11:15:21 +00:00
# math.prod not compatible with python < 3.8
def prod(iterable):
return reduce(operator.mul, iterable, 1)
2022-07-01 14:16:10 +00:00
2021-10-06 02:16:20 +00:00
name2qmap = {}
2022-07-01 14:16:10 +00:00
if COMPILED_WITH_CUDA:
"""C FUNCTIONS FOR OPTIMIZERS"""
2022-07-01 14:16:10 +00:00
str2optimizer32bit = {}
str2optimizer32bit["adam"] = (lib.cadam32bit_gfp32, lib.cadam32bit_gfp16, lib.cadam32bit_gbf16)
str2optimizer32bit["momentum"] = (
lib.cmomentum32bit_g32,
lib.cmomentum32bit_g16,
)
str2optimizer32bit["rmsprop"] = (
lib.crmsprop32bit_g32,
lib.crmsprop32bit_g16,
)
str2optimizer32bit["adagrad"] = (
lib.cadagrad32bit_g32,
lib.cadagrad32bit_g16,
)
2022-07-01 14:16:10 +00:00
str2optimizer8bit = {}
str2optimizer8bit["adam"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["momentum"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
str2optimizer8bit["rmsprop"] = (
lib.crmsprop_static_8bit_g32,
lib.crmsprop_static_8bit_g16,
)
str2optimizer8bit["lamb"] = (
lib.cadam_static_8bit_g32,
lib.cadam_static_8bit_g16,
)
str2optimizer8bit["lars"] = (
lib.cmomentum_static_8bit_g32,
lib.cmomentum_static_8bit_g16,
)
2022-07-01 14:16:10 +00:00
str2optimizer8bit_blockwise = {}
str2optimizer8bit_blockwise["adam"] = (
lib.cadam_8bit_blockwise_fp32,
lib.cadam_8bit_blockwise_fp16,
2023-04-01 17:33:03 +00:00
lib.cadam_8bit_blockwise_bf16,
)
str2optimizer8bit_blockwise["momentum"] = (
lib.cmomentum_8bit_blockwise_fp32,
lib.cmomentum_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["rmsprop"] = (
lib.crmsprop_8bit_blockwise_fp32,
lib.crmsprop_8bit_blockwise_fp16,
)
str2optimizer8bit_blockwise["adagrad"] = (
lib.cadagrad_8bit_blockwise_fp32,
lib.cadagrad_8bit_blockwise_fp16,
)
2021-10-06 02:16:20 +00:00
class CUBLAS_Context:
2022-07-22 21:41:05 +00:00
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
2022-07-22 21:41:05 +00:00
def initialize(self):
self.context = {}
# prev_device = torch.cuda.current_device()
# for i in range(torch.cuda.device_count()):
2022-07-22 21:41:05 +00:00
# torch.cuda.set_device(torch.device('cuda', i))
# self.context.append(ct.c_void_p(lib.get_context()))
# torch.cuda.set_device(prev_device)
2022-07-22 21:41:05 +00:00
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def get_context(self, device):
if device.index not in self.context:
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
self.context[device.index] = ct.c_void_p(lib.get_context())
torch.cuda.set_device(prev_device)
return self.context[device.index]
class Cusparse_Context:
2022-07-22 21:41:05 +00:00
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
2022-07-22 21:41:05 +00:00
def initialize(self):
self.context = ct.c_void_p(lib.get_cusparse())
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
2021-10-06 02:16:20 +00:00
2022-11-19 15:24:03 +00:00
def create_linear_map(signed=True, total_bits=8, add_zero=True):
2022-11-06 19:47:54 +00:00
sign = (-1.0 if signed else 0.0)
2022-11-19 15:24:03 +00:00
total_values = 2**total_bits
if add_zero or total_bits < 8:
# add a zero
# since we simulate less bits by having zeros in the data type, we
# we need to center the quantization around zero and as such lose
# a single value
total_values = (2**total_bits if not signed else 2**total_bits-1)
values = torch.linspace(sign, 1.0, total_values)
2022-11-06 19:47:54 +00:00
gap = 256 - values.numel()
if gap == 0:
return values
2021-10-06 02:16:20 +00:00
else:
2022-11-06 19:47:54 +00:00
l = values.numel()//2
#return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
2021-10-06 02:16:20 +00:00
def create_custom_map(seed=0, scale=0.01):
2023-03-30 01:41:37 +00:00
v = [12, 10, 8, 6, 3, 2, 1]
# 16-bit 7B 22.33, 4-bit best 22.88, FP4 23.25, 4-bit 95 22.97, 4-bit evo 22.45
# 16-bit 13B 70.35, 4-bit best 67.16, FP4 100.78, 4-bit-95 69.39, 4-bit evo 70.48
# 13B 100 steps:
# - 4-bit evo: 86.02
# - 4-bit norm: 78.73
# - 4-bit FP4:
# - 16-bit:
# interval search on normal distribution
#v = [3.090232306167813, 1.4589770349449647, 1.064410327932115, 0.7896806653244509, 0.5646884166925807, 0.3653406435875121, 0.17964844284441311] # 0.999 26.5
#v = [2.3263478740408408, 1.4050715603096329, 1.0364333894937898, 0.7721932141886848, 0.5533847195556727, 0.3584587932511938, 0.1763741647808615] # 0.99 24.99
#v = [1.6448536269514722, 1.2040469600267016, 0.9208229763683788, 0.6971414348463417, 0.5039653672113453, 0.3280721075316511, 0.16184416680396213] # 0.95 24.53 22.97
#v = [1.4050715603096329, 1.0803193408149558, 0.8416212335729143, 0.643345405392917, 0.4676987991145084, 0.3054807880993974, 0.1509692154967774] # 0.92 24.81
#v = [1.2815515655446004, 1.0062699858608395, 0.7916386077433746, 0.6084981344998837, 0.4438613119262478, 0.29050677112339396, 0.14372923370582416] # 0.9 24.68
#v = [1.8807936081512509, 1.2980047163986055, 0.9769954022693226, 0.7341502955472268, 0.5285136765472481, 0.343225833559403, 0.16910470304375366] # 0.97 25.03
#v = [1.7506860712521692, 1.2496468758017434, 0.9485350408266378, 0.7155233557034365, 0.5162006366043174, 0.3356393360829622, 0.16547334454641704] # 0.96 24.85 23.01
#v = [1.5547735945968535, 1.1608220210715001, 0.893800631179489, 0.6789921163940618, 0.4918050830048072, 0.3205236191093902, 0.15821711945563585] # 0.94 24.47
#v = [1.475791028179171, 1.1196635980209986, 0.8674156943957149, 0.6610637542614526, 0.4797170937629045, 0.31299335020578195, 0.15459215234139795] # 0.93 24.85
#v = [1.5981931399228175, 1.1821583959486879, 0.9072289939325966, 0.6880384454306778, 0.49787602226482025, 0.3242955535308664, 0.160030379970179] # 0.945 24.287
##v = [1.6164363711150211, 1.1908453913294612, 0.9126463450304729, 0.6916727602238111, 0.5003095327012462, 0.3258056171348078, 0.1607558311941979] # 0.947 24.293
#v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.207
#v = [1.6118251211466303, 1.188665228776879, 0.9112895004060624, 0.690763326564427, 0.4997008778346997, 0.3254280317127771, 0.16057446047146948] # 0.9465 24.30
#v = [1.6027040905517569, 1.184321770169049, 0.9085808314549837, 0.6889461706317986, 0.4984841229538408, 0.32467299997597887, 0.1602117348657326] # 0.9455 24.293
2023-04-26 00:15:51 +00:00
#v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.37 22.88
2023-03-30 01:41:37 +00:00
# 7B evo start
#v = [1.62129629, 1.18870191, 0.90848106, 0.69108646, 0.50515268, 0.34927819905, 0.14122701] # 22.06
#v = [1.6143079205628337, 1.1888081407660314, 0.8990131955745421, 0.694373759813679, 0.5083033257326773, 0.3452499746844963, 0.1148939728228951]
#v = [1.614442766030303, 1.189401918639665, 0.8998038168964273, 0.6953094818279475, 0.5073264599048384, 0.3449003790823619, 0.11428378427205564]
# 13B evo start
#v = [1.6077535089716468, 1.1914902148179205, 0.8999752421085561, 0.6967904489387543, 0.4949093928311768, 0.30920472033044544, 0.15391602735952042]
#v = [1.586363722436466, 1.202610827188916, 0.9003332576346587, 0.6904888715206972, 0.49490974688233724, 0.2971151461329376, 0.15683230810738283]
2023-04-26 00:15:51 +00:00
v = [1.5842247437829478, 1.2037228884260156, 0.900369059187269, 0.6898587137788914, 0.4949097822874533, 0.2959061887131868, 0.15712393618216908]
2023-03-30 01:41:37 +00:00
# mean evo 7B + 13B
#v = [1.5993337549066253, 1.1965624035328402, 0.9000864380418481, 0.6925840978034195, 0.5011181210961458, 0.32040328389777434, 0.13570386022711237]
# theoretically optiomal (0.93333)
2023-04-02 21:09:08 +00:00
#v = [1.501085946044025, 1.1331700302595604, 0.8761428492468408, 0.6670160135425023, 0.48373855304610314, 0.3155014472579608, 0.15580024666388428] # 0.9333333333333333
2023-03-30 01:41:37 +00:00
if seed > 0:
v = np.array(v)
np.random.seed(seed)
v += np.random.randn(7)*scale
print(v.tolist())
#v[0] += (np.random.randn(1)*0.001)[0]
#v[-1] += (np.random.randn(1)*0.001)[0]
#print(v[0], v[-1])
v = v.tolist()
values = v + [0]*(256-14) + \
v[::-1]
values = torch.Tensor(values)
values[0:7] *= -1
values = values.sort().values
values /= values.max()
assert values.numel() == 256
return values
2023-04-02 21:42:45 +00:00
def create_normal_map(offset=0.9677083, use_extra_value=True):
2023-04-02 21:09:08 +00:00
if use_extra_value:
# one more positive value, this is an asymmetric type
v1 = norm.ppf(torch.linspace(offset, 0.5, 9)[:-1]).tolist()
v2 = [0]*(256-15) ## we have 15 non-zero values in this data type
v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
v = v1 + v2 + v3
else:
v1 = norm.ppf(torch.linspace(offset, 0.5, 8)[:-1]).tolist()
v2 = [0]*(256-14) ## we have 14 non-zero values in this data type
v3 = (-norm.ppf(torch.linspace(offset, 0.5, 8)[:-1])).tolist()
v = v1 + v2 + v3
values = torch.Tensor(v)
values = values.sort().values
values /= values.max()
assert values.numel() == 256
return values
2022-11-06 19:59:37 +00:00
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
2022-11-04 02:49:50 +00:00
e = exponent_bits
p = precision_bits
2022-11-06 19:59:37 +00:00
has_sign = 1 if signed else 0
assert e+p == total_bits-has_sign
2022-11-04 02:49:50 +00:00
# the exponent is biased to 2^(e-1) -1 == 0
evalues = []
pvalues = []
2022-11-06 19:59:37 +00:00
for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
2022-11-04 02:49:50 +00:00
evalues.append(2**val)
values = []
2022-11-19 15:24:03 +00:00
lst = list(itertools.product([0, 1], repeat=precision_bits))
#for ev in evalues:
2023-03-30 01:41:37 +00:00
bias = 2**(exponent_bits-1)-1
2022-11-19 15:24:03 +00:00
for evalue in range(2**(exponent_bits)):
for bit_pattern in lst:
value = (1 if evalue != 0 else 0)
for i, pval in enumerate(list(bit_pattern)):
value += pval*(2**-(i+1))
if evalue == 0:
# subnormals
2023-03-30 01:41:37 +00:00
value = value*2**-(bias-1)
2022-11-19 15:24:03 +00:00
else:
# normals
2023-03-30 01:41:37 +00:00
value = value*2**-(evalue-bias-2)
2022-11-19 15:24:03 +00:00
values.append(value)
2022-11-06 19:59:37 +00:00
if signed:
2022-11-19 15:24:03 +00:00
values.append(-value)
assert len(values) == 2**total_bits
values.sort()
2022-11-06 19:59:37 +00:00
if total_bits < 8:
gap = 256 - len(values)
for i in range(gap):
values.append(0)
2022-11-04 02:49:50 +00:00
values.sort()
code = torch.Tensor(values)
2023-02-05 06:00:04 +00:00
code /= code.max()
2022-11-04 02:49:50 +00:00
return code
2022-11-06 21:05:25 +00:00
def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8):
"""
2021-10-06 02:16:20 +00:00
Creates the dynamic quantiztion map.
The dynamic data type is made up of a dynamic exponent and
fraction. As the exponent increase from 0 to -7 the number
of bits available for the fraction shrinks.
This is a generalization of the dynamic type where a certain
number of the bits and be reserved for the linear quantization
region (the fraction). n determines the maximum number of
exponent bits.
For more details see
(8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
"""
2021-10-06 02:16:20 +00:00
data = []
# these are additional items that come from the case
# where all the exponent bits are zero and no
# indicator bit is present
2022-11-06 21:05:25 +00:00
non_sign_bits = total_bits - (1 if signed else 0)
additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1
if not signed:
additional_items = 2 * additional_items
2022-11-06 21:05:25 +00:00
for i in range(max_exponent_bits):
fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1))
2021-10-06 02:16:20 +00:00
boundaries = torch.linspace(0.1, 1, fraction_items)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
2022-11-06 21:05:25 +00:00
data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
2021-10-06 02:16:20 +00:00
if signed:
2022-11-06 21:05:25 +00:00
data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
2021-10-06 02:16:20 +00:00
2022-11-06 21:05:25 +00:00
if additional_items > 0:
boundaries = torch.linspace(0.1, 1, additional_items + 1)
means = (boundaries[:-1] + boundaries[1:]) / 2.0
data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
if signed:
data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist()
2021-10-06 02:16:20 +00:00
data.append(0)
data.append(1.0)
2022-11-06 21:05:25 +00:00
gap = 256 - len(data)
for i in range(gap):
data.append(0)
2021-10-06 02:16:20 +00:00
data.sort()
return Tensor(data)
2022-11-19 15:24:03 +00:00
def create_quantile_map(A, total_bits=8):
q = estimate_quantiles(A, num_quantiles=2**total_bits-1)
q = q.tolist()
q.append(0)
gap = 256 - len(q)
for i in range(gap):
q.append(0)
q.sort()
q = Tensor(q)
q = q/q.abs().max()
return q
2022-07-22 21:41:05 +00:00
def get_special_format_str():
if not torch.cuda.is_available(): return 'col_turing'
2022-10-27 11:25:07 +00:00
major, _minor = torch.cuda.get_device_capability()
if major <= 7:
return "col_turing"
2022-10-27 11:25:07 +00:00
if major == 8:
return "col_ampere"
2022-10-27 11:25:07 +00:00
return "col_turing"
2022-07-22 21:41:05 +00:00
def is_on_gpu(tensors):
on_gpu = True
gpu_ids = set()
for t in tensors:
if t is None: continue # NULL pointers are fine
on_gpu &= t.device.type == 'cuda'
gpu_ids.add(t.device.index)
if len(gpu_ids) > 1:
raise TypeError(f'Input tensors need to be on the same GPU, but found the following tensor and device combinations:{[(t.shape, t.device) for t in tensors]}')
return on_gpu
2021-10-06 02:16:20 +00:00
def get_ptr(A: Tensor) -> ct.c_void_p:
"""
2021-10-06 02:16:20 +00:00
Get the ctypes pointer from a PyTorch Tensor.
Parameters
----------
A : torch.tensor
The PyTorch tensor.
Returns
-------
ctypes.c_void_p
"""
if A is None:
return None
else:
return ct.c_void_p(A.data.data_ptr())
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
def pre_call(device):
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
return prev_device
2022-07-22 21:41:05 +00:00
def post_call(prev_device):
torch.cuda.set_device(prev_device)
2022-07-22 21:41:05 +00:00
def get_transform_func(dtype, orderA, orderOut, transpose=False):
name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}'
if not hasattr(lib, name):
print(name)
raise ValueError(
f"Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}"
)
2022-07-22 21:41:05 +00:00
else:
return getattr(lib, name)
def get_transform_buffer(
shape, dtype, device, to_order, from_order="row", transpose=False
):
# init_func = torch.empty
2022-07-22 21:41:05 +00:00
init_func = torch.zeros
dims = len(shape)
if dims == 2:
rows = shape[0]
elif dims == 3:
rows = shape[0] * shape[1]
2022-07-22 21:41:05 +00:00
cols = shape[-1]
state = (shape, to_order)
if transpose:
# swap dims
tmp = rows
rows = cols
cols = tmp
state = (shape[::-1], to_order)
if to_order == "row" or to_order == "col":
2022-07-22 21:41:05 +00:00
return init_func(shape, dtype=dtype, device=device), state
elif to_order == "col32":
2022-07-22 21:41:05 +00:00
# blocks of 32 columns (padded)
cols = 32 * ((cols + 31) // 32)
2022-07-22 21:41:05 +00:00
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == "col_turing":
2022-07-22 21:41:05 +00:00
# blocks of 32 columns and 8 rows
cols = 32 * ((cols + 31) // 32)
rows = 8 * ((rows + 7) // 8)
2022-07-22 21:41:05 +00:00
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == "col_ampere":
2022-07-22 21:41:05 +00:00
# blocks of 32 columns and 32 rows
cols = 32 * ((cols + 31) // 32)
rows = 32 * ((rows + 31) // 32)
2022-07-22 21:41:05 +00:00
return init_func((rows, cols), dtype=dtype, device=device), state
else:
raise NotImplementedError(f"To_order not supported: {to_order}")
2022-07-22 21:41:05 +00:00
def nvidia_transform(
A,
to_order,
from_order="row",
out=None,
transpose=False,
state=None,
ld=None,
):
if state is None:
state = (A.shape, from_order)
else:
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
)
else:
new_state = (state[1], to_order)
2022-07-22 21:41:05 +00:00
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = prod(shape)
dim1 = prod([shape[i] for i in ld])
dim2 = ct.c_int32(n // dim1)
2022-07-22 21:41:05 +00:00
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0] * shape[1])
2022-07-22 21:41:05 +00:00
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
2022-11-06 21:05:25 +00:00
def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, num_quantiles=256) -> Tensor:
2021-10-06 02:16:20 +00:00
'''
Estimates 256 equidistant quantiles on the input tensor eCDF.
Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
and the extreme quantiles close to 0 and 1 have high variance / large estimation
errors. These large errors can be avoided by using the offset variable which trims
the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
usually has a much lower error but is not a minimum entropy encoding. Given an offset
of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.
Parameters
----------
A : torch.Tensor
The input tensor. Any shape.
out : torch.Tensor
Tensor with the 256 estimated quantiles.
offset : float
2022-11-06 21:05:25 +00:00
The offset for the first and last quantile from 0 and 1. Default: 1/(2*num_quantiles)
num_quantiles : int
The number of equally spaced quantiles.
2021-10-06 02:16:20 +00:00
Returns
-------
torch.Tensor:
The 256 quantiles in float32 datatype.
'''
2022-11-06 21:05:25 +00:00
if A.numel() < 256: raise NotImplementedError(f'Quantile estimation needs at least 256 values in the Tensor, but Tensor had only {A.numel()} values.')
if num_quantiles > 256: raise NotImplementedError(f"Currently only a maximum of 256 equally spaced quantiles are supported, but the argument num_quantiles={num_quantiles}")
if num_quantiles < 256 and offset == 1/(512):
# override default arguments
offset = 1/(2*num_quantiles)
2021-10-06 02:16:20 +00:00
if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device)
is_on_gpu([A, out])
2022-11-06 21:05:25 +00:00
device = pre_call(A.device)
2021-10-06 02:16:20 +00:00
if A.dtype == torch.float32:
2022-11-06 21:05:25 +00:00
lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
elif A.dtype == torch.float16:
2022-11-06 21:05:25 +00:00
lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
else:
raise NotImplementedError(f"Not supported data type {A.dtype}")
2022-11-06 21:05:25 +00:00
post_call(device)
if num_quantiles < 256:
2022-11-19 15:24:03 +00:00
step = round(256/num_quantiles)
2022-11-06 21:05:25 +00:00
idx = torch.linspace(0, 255, num_quantiles).long().to(A.device)
out = out[idx]
2021-10-06 02:16:20 +00:00
return out
def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096, nested=False) -> Tensor:
"""
2021-10-06 02:16:20 +00:00
Quantize tensor A in blocks of size 4096 values.
Quantizes tensor A by dividing it into blocks of 4096 values.
Then the absolute maximum value within these blocks is calculated
for the non-linear quantization.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
absmax : torch.Tensor
The absmax values.
rand : torch.Tensor
The tensor for stochastic rounding.
out : torch.Tensor
The output tensor (8-bit).
Returns
-------
torch.Tensor:
The 8-bit tensor.
tuple(torch.Tensor, torch.Tensor):
The quantization state to undo the quantization.
"""
2021-10-06 02:16:20 +00:00
2021-10-06 02:16:20 +00:00
if code is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
2021-10-06 02:16:20 +00:00
if absmax is None:
n = A.numel()
blocks = n // blocksize
blocks += 1 if n % blocksize > 0 else 0
2021-10-06 02:16:20 +00:00
absmax = torch.zeros((blocks,), device=A.device)
if out is None:
out = torch.zeros_like(A, dtype=torch.uint8)
2021-10-06 02:16:20 +00:00
if A.device.type != 'cpu':
assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
cblocksize = ct.c_int32(blocksize)
prev_device = pre_call(A.device)
code = code.to(A.device)
2021-10-06 02:16:20 +00:00
if rand is not None:
is_on_gpu([code, A, out, absmax, rand])
assert blocksize==4096
2021-10-06 02:16:20 +00:00
assert rand.numel() >= 1024
rand_offset = random.randint(0, 1023)
if A.dtype == torch.float32:
lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
elif A.dtype == torch.float16:
lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
2021-10-06 02:16:20 +00:00
else:
is_on_gpu([code, A, out, absmax])
2021-10-06 02:16:20 +00:00
if A.dtype == torch.float32:
lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
elif A.dtype == torch.float16:
lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
2021-10-06 02:16:20 +00:00
else:
# cpu
code = code.cpu()
2021-10-06 02:16:20 +00:00
assert rand is None
lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
2021-10-06 02:16:20 +00:00
if nested:
offset = absmax.mean()
absmax -= offset
qabsmax, state2 = quantize_blockwise(absmax, blocksize=blocksize, nested=False)
state = [qabsmax, code, blocksize, nested, offset, state2]
else:
state = [absmax, code, blocksize, nested, None, None]
return out, state
2021-10-06 02:16:20 +00:00
def dequantize_blockwise(
A: Tensor,
quant_state: Tuple[Tensor, Tensor] = None,
absmax: Tensor = None,
code: Tensor = None,
out: Tensor = None,
blocksize: int = 4096,
nested=False
) -> Tensor:
"""
2021-10-06 02:16:20 +00:00
Dequantizes blockwise quantized values.
Dequantizes the tensor A with maximum absolute values absmax in
blocks of size 4096.
Parameters
----------
A : torch.Tensor
The input 8-bit tensor.
quant_state : tuple(torch.Tensor, torch.Tensor)
Tuple of code and absmax values.
2021-10-06 02:16:20 +00:00
absmax : torch.Tensor
The absmax values.
code : torch.Tensor
The quantization map.
out : torch.Tensor
Dequantized output tensor (default: float32)
Returns
-------
torch.Tensor:
Dequantized tensor (default: float32)
"""
2021-10-06 02:16:20 +00:00
assert quant_state is not None or absmax is not None
if code is None and quant_state is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
2021-10-06 02:16:20 +00:00
if out is None:
out = torch.zeros_like(A, dtype=torch.float32)
if quant_state is None:
quant_state = (absmax, code, blocksize)
else:
absmax, code, blocksize, nested, offset, state2 = quant_state
if nested:
absmax = dequantize_blockwise(absmax, state2)
absmax += offset
2021-10-06 02:16:20 +00:00
if A.device.type != 'cpu':
device = pre_call(A.device)
code = code.to(A.device)
if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]")
is_on_gpu([A, absmax, out])
2021-10-06 02:16:20 +00:00
if out.dtype == torch.float32:
lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
elif out.dtype == torch.float16:
lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
2021-10-06 02:16:20 +00:00
else:
2022-11-07 00:36:31 +00:00
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
2021-10-06 02:16:20 +00:00
else:
code = code.cpu()
lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel()))
2021-10-06 02:16:20 +00:00
return out
2023-04-02 23:10:35 +00:00
def quantize_fp4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False):
return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'fp4')
2021-10-06 02:16:20 +00:00
2023-04-02 23:10:35 +00:00
def quantize_nf4(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False):
return quantize_4bit(A, absmax, out, blocksize, compress_statistics, 'nf4')
2023-04-02 23:10:35 +00:00
def quantize_4bit(A: Tensor, absmax: Tensor = None, out: Tensor = None, blocksize=64, compress_statistics=False, quant_type='fp4') -> Tensor:
"""
Quantize tensor A in blocks of 4-bit values.
Quantizes tensor A by dividing it into blocks which are independently quantized to FP4.
Parameters
----------
A : torch.Tensor
The input tensor.
absmax : torch.Tensor
The absmax values.
out : torch.Tensor
The output tensor (8-bit).
blocksize : int
The blocksize used in quantization.
2023-04-02 23:10:35 +00:00
quant_type : str
The 4-bit quantization data type {fp4, nf4}
Returns
-------
torch.Tensor:
The 8-bit tensor with packed 4-bit values.
2023-02-05 05:11:21 +00:00
tuple(torch.Tensor, torch.Size, torch.dtype, int):
The quantization state to undo the quantization.
"""
if A.device.type != 'cuda':
raise NotImplementedError(f'Device type not supported for FP4 quantization: {A.device.type}')
2023-04-02 23:10:35 +00:00
if quant_type not in ['fp4', 'nf4']:
raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.')
n = A.numel()
input_shape = A.shape
if absmax is None:
blocks = n // blocksize
blocks += 1 if n % blocksize > 0 else 0
absmax = torch.zeros((blocks,), device=A.device)
if out is None:
2023-02-05 05:11:21 +00:00
out = torch.zeros(((n+1)//2, 1), dtype=torch.uint8, device=A.device)
assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64]
prev_device = pre_call(A.device)
is_on_gpu([A, out, absmax])
if A.dtype == torch.float32:
2023-04-02 23:10:35 +00:00
if quant_type == 'fp4':
lib.cquantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
else:
lib.cquantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
elif A.dtype == torch.float16:
2023-04-02 23:10:35 +00:00
if quant_type == 'fp4':
lib.cquantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
else:
lib.cquantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int32(blocksize), ct.c_int(n))
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
if compress_statistics:
offset = absmax.mean()
absmax -= offset
#code = create_custom_map().to(absmax.device)
#qabsmax, state2 = quantize_blockwise(absmax, code=code, blocksize=256)
qabsmax, state2 = quantize_blockwise(absmax, blocksize=256)
del absmax
state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type]
else:
state = [absmax, input_shape, A.dtype, blocksize, None, quant_type]
return out, state
2023-04-02 23:10:35 +00:00
def dequantize_fp4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor:
return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'fp4')
2023-04-02 23:10:35 +00:00
def dequantize_nf4(A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64) -> Tensor:
return dequantize_4bit(A, quant_state, absmax, out, blocksize, 'nf4')
def dequantize_4bit(A: Tensor,quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, out: Tensor = None, blocksize: int = 64, quant_type='fp4') -> Tensor:
"""
Dequantizes FP4 blockwise quantized values.
Dequantizes the tensor A with maximum absolute values absmax in blocks of size blocksize.
Parameters
----------
A : torch.Tensor
The input 8-bit tensor (packed 4-bit values).
quant_state : tuple(torch.Tensor, torch.Size, torch.dtype)
Tuple of absmax values, original tensor shape and original dtype.
absmax : torch.Tensor
The absmax values.
out : torch.Tensor
Dequantized output tensor.
2023-04-02 23:10:35 +00:00
blocksize : int
The blocksize used in quantization.
quant_type : str
The 4-bit quantization data type {fp4, nf4}
Returns
-------
torch.Tensor:
Dequantized tensor.
"""
if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]:
raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]")
2023-04-02 23:10:35 +00:00
if quant_type not in ['fp4', 'nf4']:
raise NotImplementedError(f'4-bit quantization data type {quant_type} is not implemented.')
if quant_state is None:
assert absmax is not None and out is not None
shape = out.shape
dtype = out.dtype
else:
absmax, shape, dtype, blocksize, compressed_stats, quant_type = quant_state
if compressed_stats is not None:
offset, state2 = compressed_stats
absmax = dequantize_blockwise(absmax, state2)
absmax += offset
if out is None:
out = torch.empty(shape, dtype=dtype, device=A.device)
n = out.numel()
2023-02-05 05:11:21 +00:00
device = pre_call(A.device)
is_on_gpu([A, absmax, out])
if out.dtype == torch.float32:
2023-04-02 23:10:35 +00:00
if quant_type == 'fp4':
lib.cdequantize_blockwise_fp32_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
else:
lib.cdequantize_blockwise_fp32_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
elif out.dtype == torch.float16:
2023-04-02 23:10:35 +00:00
if quant_type == 'fp4':
lib.cdequantize_blockwise_fp16_fp4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
else:
lib.cdequantize_blockwise_fp16_nf4(get_ptr(None), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(n))
else:
raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}")
post_call(A.device)
2023-02-05 05:11:21 +00:00
is_transposed = (True if A.shape[0] == 1 else False)
if is_transposed: return out.t()
else: return out
def quantize(A: Tensor, code: Tensor = None, out: Tensor = None) -> Tensor:
2021-10-06 02:16:20 +00:00
if code is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
2021-10-06 02:16:20 +00:00
code = code.to(A.device)
absmax = torch.abs(A).max()
inp = A / absmax
2021-10-06 02:16:20 +00:00
out = quantize_no_absmax(inp, code, out)
return out, (absmax, code)
def dequantize(
A: Tensor,
quant_state: Tuple[Tensor, Tensor] = None,
absmax: Tensor = None,
code: Tensor = None,
out: Tensor = None,
) -> Tensor:
2021-10-06 02:16:20 +00:00
assert quant_state is not None or absmax is not None
if code is None and quant_state is None:
if "dynamic" not in name2qmap:
name2qmap["dynamic"] = create_dynamic_map().to(A.device)
code = name2qmap["dynamic"]
2021-10-06 02:16:20 +00:00
code = code.to(A.device)
if quant_state is None:
quant_state = (absmax, code)
2021-10-06 02:16:20 +00:00
out = dequantize_no_absmax(A, quant_state[1], out)
return out * quant_state[0]
2021-10-06 02:16:20 +00:00
def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
2021-10-06 02:16:20 +00:00
'''
Quantizes input tensor to 8-bit.
Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
`out` using the quantization map `code`.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor, optional
The output tensor. Needs to be of type byte.
Returns
-------
torch.Tensor:
Quantized 8-bit tensor.
'''
if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
is_on_gpu([A, out])
2021-10-06 02:16:20 +00:00
lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
return out
def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor:
2021-10-06 02:16:20 +00:00
'''
Dequantizes the 8-bit tensor to 32-bit.
Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
the quantization map `code`.
Parameters
----------
A : torch.Tensor
The 8-bit input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor
The 32-bit output tensor.
Returns
-------
torch.Tensor:
32-bit output tensor.
'''
if out is None: out = torch.zeros_like(A, dtype=torch.float32)
is_on_gpu([code, A, out])
2021-10-06 02:16:20 +00:00
lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
return out
def optimizer_update_32bit(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
beta1: float,
eps: float,
step: int,
lr: float,
state2: Tensor = None,
beta2: float = 0.0,
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
unorm_vec: Tensor = None,
max_unorm: float = 0.0,
skip_zeros=False,
) -> None:
"""
2021-10-06 02:16:20 +00:00
Performs an inplace optimizer update with one or two optimizer states.
Universal optimizer update for 32-bit state and 32/16-bit gradients/weights.
Parameters
----------
optimizer_name : str
The name of the optimizer: {adam}.
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Optimizer state 1.
beta1 : float
Optimizer beta1.
eps : float
Optimizer epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
state2 : torch.Tensor
Optimizer state 2.
beta2 : float
Optimizer beta2.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
2021-10-21 01:37:44 +00:00
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
skip_zeros : bool
Whether to skip zero-valued gradients or not (default: False).
"""
2021-10-06 02:16:20 +00:00
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
optim_func = None
if g.dtype == torch.float32:
optim_func = str2optimizer32bit[optimizer_name][0]
elif g.dtype == torch.float16:
optim_func = str2optimizer32bit[optimizer_name][1]
elif (g.dtype == torch.bfloat16 and len(str2optimizer32bit[optimizer_name])==3):
optim_func = str2optimizer32bit[optimizer_name][2]
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}")
is_on_gpu([g, p, state1, state2, unorm_vec])
prev_device = pre_call(g.device)
optim_func(
get_ptr(g),
get_ptr(p),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_float(weight_decay),
ct.c_int32(step),
ct.c_float(lr),
ct.c_float(gnorm_scale),
ct.c_bool(skip_zeros),
ct.c_int32(g.numel()))
post_call(prev_device)
def optimizer_update_8bit(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
state2: Tensor,
beta1: float,
beta2: float,
eps: float,
step: int,
lr: float,
qmap1: Tensor,
qmap2: Tensor,
max1: Tensor,
max2: Tensor,
new_max1: Tensor,
new_max2: Tensor,
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
unorm_vec: Tensor = None,
max_unorm: float = 0.0,
) -> None:
"""
2021-10-06 02:16:20 +00:00
Performs an inplace Adam update.
Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights.
Uses AdamW formulation if weight decay > 0.0.
Parameters
----------
optimizer_name : str
The name of the optimizer. Choices {adam, momentum}
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Adam state 1.
state2 : torch.Tensor
Adam state 2.
beta1 : float
Adam beta1.
beta2 : float
Adam beta2.
eps : float
Adam epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
qmap1 : torch.Tensor
Quantization map for first Adam state.
qmap2 : torch.Tensor
Quantization map for second Adam state.
max1 : torch.Tensor
Max value for first Adam state update.
max2 : torch.Tensor
Max value for second Adam state update.
new_max1 : torch.Tensor
Max value for the next Adam update of the first state.
new_max2 : torch.Tensor
Max value for the next Adam update of the second state.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
2021-10-21 01:37:44 +00:00
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
"""
2021-10-06 02:16:20 +00:00
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][0](
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(max1),
get_ptr(max2),
get_ptr(new_max1),
get_ptr(new_max2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_int32(g.numel()),
)
2021-10-06 02:16:20 +00:00
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][1](
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
get_ptr(unorm_vec),
ct.c_float(max_unorm),
ct.c_float(param_norm),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(max1),
get_ptr(max2),
get_ptr(new_max1),
get_ptr(new_max2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_int32(g.numel()),
)
2021-10-06 02:16:20 +00:00
else:
raise ValueError(
f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
)
def optimizer_update_8bit_blockwise(
optimizer_name: str,
g: Tensor,
p: Tensor,
state1: Tensor,
state2: Tensor,
beta1: float,
beta2: float,
eps: float,
step: int,
lr: float,
qmap1: Tensor,
qmap2: Tensor,
absmax1: Tensor,
absmax2: Tensor,
weight_decay: float = 0.0,
gnorm_scale: float = 1.0,
skip_zeros=False,
) -> None:
2021-10-06 02:16:20 +00:00
2023-04-01 17:33:03 +00:00
optim_func = None
2021-10-06 02:16:20 +00:00
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
optim_func = str2optimizer8bit_blockwise[optimizer_name][0]
2021-10-06 02:16:20 +00:00
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
optim_func = str2optimizer8bit_blockwise[optimizer_name][1]
2023-04-01 17:33:03 +00:00
elif (g.dtype == torch.bfloat16 and state1.dtype == torch.uint8 and
len(str2optimizer8bit_blockwise[optimizer_name])==3):
optim_func = str2optimizer8bit_blockwise[optimizer_name][2]
2021-10-06 02:16:20 +00:00
else:
raise ValueError(
f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}"
)
2021-10-06 02:16:20 +00:00
2023-04-01 17:33:03 +00:00
is_on_gpu([p, g, state1, state2, qmap1, qmap2, absmax1, absmax2])
prev_device = pre_call(g.device)
optim_func(
2023-04-01 17:33:03 +00:00
get_ptr(p),
get_ptr(g),
get_ptr(state1),
get_ptr(state2),
ct.c_float(beta1),
ct.c_float(beta2),
ct.c_float(eps),
ct.c_int32(step),
ct.c_float(lr),
get_ptr(qmap1),
get_ptr(qmap2),
get_ptr(absmax1),
get_ptr(absmax2),
ct.c_float(weight_decay),
ct.c_float(gnorm_scale),
ct.c_bool(skip_zeros),
ct.c_int32(g.numel()),
)
post_call(prev_device)
2021-10-06 02:16:20 +00:00
def percentile_clipping(
grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5
):
2021-10-06 02:16:20 +00:00
"""Applies percentile clipping
grad: torch.Tensor
The gradient tensor.
gnorm_vec: torch.Tensor
Vector of gradient norms. 100 elements expected.
step: int
The current optimiation steps (number of past gradient norms).
"""
is_on_gpu([grad, gnorm_vec])
2021-10-06 02:16:20 +00:00
if grad.dtype == torch.float32:
lib.cpercentile_clipping_g32(
get_ptr(grad),
get_ptr(gnorm_vec),
ct.c_int32(step),
ct.c_int32(grad.numel()),
)
2021-10-06 02:16:20 +00:00
elif grad.dtype == torch.float16:
lib.cpercentile_clipping_g16(
get_ptr(grad),
get_ptr(gnorm_vec),
ct.c_int32(step),
ct.c_int32(grad.numel()),
)
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f"Gradient type {grad.dtype} not supported!")
2021-10-06 02:16:20 +00:00
current_gnorm = torch.sqrt(gnorm_vec[step % 100])
vals, idx = torch.sort(gnorm_vec)
clip_value = torch.sqrt(vals[percentile])
gnorm_scale = 1.0
if current_gnorm > clip_value:
gnorm_scale = clip_value / current_gnorm
2021-10-06 02:16:20 +00:00
return current_gnorm, clip_value, gnorm_scale
def histogram_scatter_add_2d(
histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor
):
2021-10-06 02:16:20 +00:00
assert len(histogram.shape) == 2
assert histogram.dtype == torch.float32
assert source.dtype == torch.float32
assert index1.dtype == torch.int32
assert index2.dtype == torch.int32
assert histogram.device.type == "cuda"
assert index1.device.type == "cuda"
assert index2.device.type == "cuda"
assert source.device.type == "cuda"
2021-10-06 02:16:20 +00:00
maxdim1 = ct.c_int32(histogram.shape[0])
n = ct.c_int32(index1.numel())
is_on_gpu([histogram, index1, index2, source])
2021-10-06 02:16:20 +00:00
lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
2022-07-22 21:41:05 +00:00
def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8):
if not torch.cuda.is_initialized(): torch.cuda.init()
if A.dtype != expected_type or B.dtype != expected_type:
raise TypeError(
f"Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}"
)
2022-07-22 21:41:05 +00:00
sA = A.shape
sB = B.shape
tA = transposed_A
tB = transposed_B
correct = True
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB and A.shape[1] != B.shape[0]:
correct = False
elif tA and not tB and A.shape[0] != B.shape[0]:
correct = False
elif tA and tB and A.shape[0] != B.shape[1]:
correct = False
elif not tA and tB and A.shape[1] != B.shape[1]:
correct = False
2022-07-22 21:41:05 +00:00
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB and A.shape[2] != B.shape[0]:
correct = False
elif tA and not tB and A.shape[1] != B.shape[0]:
correct = False
elif tA and tB and A.shape[1] != B.shape[1]:
correct = False
elif not tA and tB and A.shape[2] != B.shape[1]:
correct = False
2022-07-22 21:41:05 +00:00
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB and A.shape[2] != B.shape[1]:
correct = False
elif tA and not tB and A.shape[1] != B.shape[1]:
correct = False
elif tA and tB and A.shape[1] != B.shape[2]:
correct = False
elif not tA and tB and A.shape[2] != B.shape[2]:
correct = False
2022-07-22 21:41:05 +00:00
if out is not None:
sout = out.shape
# special case common in backprop
if not correct and len(sA) == 3 and len(sB) == 3:
if (
sout[0] == sA[2]
and sout[1] == sB[2]
and sA[0] == sB[0]
and sA[1] == sB[1]
):
2022-07-22 21:41:05 +00:00
correct = True
else:
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB:
sout = (sA[0], sB[1])
elif tA and tB:
sout = (sA[1], sB[0])
elif tA and not tB:
sout = (sA[1], sB[1])
elif not tA and tB:
sout = (sA[0], sB[0])
2022-07-22 21:41:05 +00:00
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB:
sout = (sA[0], sA[1], sB[1])
elif tA and tB:
sout = (sA[0], sA[2], sB[0])
elif tA and not tB:
sout = (sA[0], sA[2], sB[1])
elif not tA and tB:
sout = (sA[0], sA[1], sB[0])
2022-07-22 21:41:05 +00:00
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB:
sout = (sA[0], sA[1], sB[2])
elif tA and tB:
sout = (sA[0], sA[2], sB[1])
elif tA and not tB:
sout = (sA[0], sA[2], sB[2])
elif not tA and tB:
sout = (sA[0], sA[1], sB[1])
2022-07-22 21:41:05 +00:00
if not correct:
raise ValueError(
f"Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}."
)
2022-07-22 21:41:05 +00:00
return sout
2023-04-27 00:12:34 +00:00
def cutlass3_gemm(
A: Tensor,
B: Tensor,
out: Tensor = None,
transposed_A=False,
transposed_B=False,
2023-04-30 04:52:47 +00:00
state=None
2023-04-27 00:12:34 +00:00
):
2023-04-30 04:52:47 +00:00
#sout = check_matmul(A, B, out, transposed_A, transposed_B, expected_type=A.dtype)
if state is None:
Bshape = B.shape
else:
Bshape = state[1]
2023-04-27 00:12:34 +00:00
if out is None:
2023-04-30 04:52:47 +00:00
out = torch.zeros(size=(A.shape[0], Bshape[1]), dtype=A.dtype, device=A.device)
2023-04-27 00:12:34 +00:00
sA = A.shape
sB = B.shape
if transposed_A and len(sA) == 2:
sA = (sA[1], sA[0])
elif transposed_A and len(sA) == 3:
sA = (sA[0], sA[2], sA[0])
if transposed_B and len(sB) == 2:
sB = (sB[1], sB[0])
elif transposed_B and len(sB) == 3:
sB = (sB[0], sB[2], sB[0])
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [m, k] @ [k, n] = [m, n]
# row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
# column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
if len(sB) == 2:
if B.stride()[0] == B.shape[1]:
transposed_B = False
elif B.stride()[1] == B.shape[0]:
transposed_B = True
if len(A.shape) == 2:
if A.stride()[0] == A.shape[1]:
transposed_A = False
elif A.stride()[1] == A.shape[0]:
transposed_A = True
else:
if A.stride()[1] == A.shape[2]:
transposed_A = False
elif A.stride()[2] == A.shape[1]:
transposed_A = True
if len(sA) == 2:
n = sA[0]
ldb = A.stride()[1 if transposed_A else 0]
elif len(sA) == 3 and len(sB) == 2:
n = sA[0] * sA[1]
ldb = sA[2]
m = sB[1]
k = sB[0]
2023-04-29 00:19:02 +00:00
lda = B.stride()[0]
2023-04-27 00:12:34 +00:00
ldc = sB[1]
elif len(sB) == 3:
# special case
assert len(sA) == 3
if not (sA[0] == sB[0] and sA[1] == sB[1]):
raise ValueError(
f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}"
)
transposed_A = True
transposed_B = False
m = sB[2]
n = sA[2]
k = sB[0] * sB[1]
2023-04-29 00:19:02 +00:00
lda = n
2023-04-27 00:12:34 +00:00
ldb = sA[2]
ldc = m
ptr = CUBLAS_Context.get_instance().get_context(A.device)
# B^T @ A^T = C^T
# [km, nk -> mn]
2023-04-29 00:19:02 +00:00
#lda = ldb = ldc = 1
2023-04-27 00:12:34 +00:00
#lda = 1
2023-04-30 04:52:47 +00:00
if state is not None:
m = Bshape[0]
k = Bshape[1]
lda = Bshape[1]
ldc = Bshape[0]
ldb = (ldb+1)//2
2023-05-02 14:24:12 +00:00
#print(m, n, k, lda, ldb, ldc)
2023-04-27 00:12:34 +00:00
is_on_gpu([B, A, out])
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
lda = ct.c_int32(lda)
ldb = ct.c_int32(ldb)
ldc = ct.c_int32(ldc)
2023-04-30 04:52:47 +00:00
if B.dtype == torch.uint8:
lib.cgemm_4bit_inference(m, n, k, get_ptr(A), get_ptr(B), get_ptr(state[0]), get_ptr(out), lda, ldb, ldc, ct.c_int32(state[3]))
elif A.dtype == torch.float32:
2023-04-29 01:26:52 +00:00
lib.cgemm_host_fp32(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc)
elif A.dtype == torch.float16:
lib.cgemm_host_fp16(m, n, k, get_ptr(A), get_ptr(B), get_ptr(out), lda, ldb, ldc)
else:
raise NotImplementedError(f'Matmul not implemented for data type {A.dtype}')
2023-04-27 00:12:34 +00:00
return out
def igemm(
A: Tensor,
B: Tensor,
out: Tensor = None,
transposed_A=False,
transposed_B=False,
):
2022-07-22 21:41:05 +00:00
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None:
out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
2022-07-22 21:41:05 +00:00
if len(A.shape) == 3 and len(B.shape) == 3:
if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]:
return batched_igemm(A, B, out)
sA = A.shape
sB = B.shape
if transposed_A and len(sA) == 2:
sA = (sA[1], sA[0])
elif transposed_A and len(sA) == 3:
sA = (sA[0], sA[2], sA[0])
if transposed_B and len(sB) == 2:
sB = (sB[1], sB[0])
elif transposed_B and len(sB) == 3:
sB = (sB[0], sB[2], sB[0])
2022-07-22 21:41:05 +00:00
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [m, k] @ [k, n] = [m, n]
# row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
# column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
if len(sB) == 2:
if B.stride()[0] == B.shape[1]:
transposed_B = False
elif B.stride()[1] == B.shape[0]:
transposed_B = True
2022-07-22 21:41:05 +00:00
if len(A.shape) == 2:
if A.stride()[0] == A.shape[1]:
transposed_A = False
elif A.stride()[1] == A.shape[0]:
transposed_A = True
2022-07-22 21:41:05 +00:00
else:
if A.stride()[1] == A.shape[2]:
transposed_A = False
elif A.stride()[2] == A.shape[1]:
transposed_A = True
2022-07-22 21:41:05 +00:00
if len(sA) == 2:
n = sA[0]
ldb = A.stride()[1 if transposed_A else 0]
elif len(sA) == 3 and len(sB) == 2:
n = sA[0] * sA[1]
2022-07-22 21:41:05 +00:00
ldb = sA[2]
m = sB[1]
k = sB[0]
lda = B.stride()[(1 if transposed_B else 0)]
ldc = sB[1]
elif len(sB) == 3:
# special case
assert len(sA) == 3
if not (sA[0] == sB[0] and sA[1] == sB[1]):
raise ValueError(
f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}"
)
2022-07-22 21:41:05 +00:00
transposed_A = True
transposed_B = False
m = sB[2]
n = sA[2]
k = sB[0] * sB[1]
2022-07-22 21:41:05 +00:00
lda = m
ldb = sA[2]
ldc = m
ptr = CUBLAS_Context.get_instance().get_context(A.device)
# B^T @ A^T = C^T
# [km, nk -> mn]
is_on_gpu([B, A, out])
2022-07-22 21:41:05 +00:00
lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc))
return out
def batched_igemm(
A: Tensor,
B: Tensor,
out: Tensor = None,
transposed_A=False,
transposed_B=False,
):
2022-07-22 21:41:05 +00:00
if not len(A.shape) == 3 or not len(B.shape) == 3:
raise ValueError(
f"Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}"
)
2022-07-22 21:41:05 +00:00
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None:
out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
2022-07-22 21:41:05 +00:00
if B.is_contiguous():
lda = B.stride()[1]
transposed_A = False
else:
s = B.stride()
if s[0] != B.shape[0]:
B = B.contiguous()
lda = B.stride()[1]
elif s[2] == B.shape[1]:
transposed_A = True
lda = B.stride()[2]
else:
if s[2] == 1:
B = B.contiguous()
lda = B.stride()[1]
elif s[1] == 1:
B = B.contiguous()
lda = B.stride()[1]
else:
B = B.contiguous()
lda = B.stride()[1]
if A.is_contiguous():
ldb = A.stride()[1]
transposed_B = False
else:
s = A.stride()
if s[0] != A.shape[0]:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
elif s[2] == A.shape[1]:
ldb = A.stride()[2]
transposed_B = True
else:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m]
num_batch = A.shape[0]
n = A.shape[1]
m = B.shape[2]
k = B.shape[1]
ldc = m
strideA = B.shape[1] * B.shape[2]
strideB = A.shape[1] * A.shape[2]
strideC = A.shape[1] * B.shape[2]
2022-07-22 21:41:05 +00:00
ptr = CUBLAS_Context.get_instance().get_context(A.device)
is_on_gpu([B, A, out])
2022-07-22 21:41:05 +00:00
lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc),
ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch))
return out
def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
2022-07-22 21:41:05 +00:00
shapeA = SA[0]
shapeB = SB[0]
dimsA = len(shapeA)
dimsB = len(shapeB)
assert dimsB == 2, 'Only two dimensional matrices are supported for argument B'
2022-07-22 21:41:05 +00:00
if dimsA == 2:
m = shapeA[0]
elif dimsA == 3:
m = shapeA[0] * shapeA[1]
2022-07-22 21:41:05 +00:00
rows = n = shapeB[0]
assert prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
# if the tensor is empty, return a transformed empty tensor with the right dimensions
if shapeA[0] == 0 and dimsA == 2:
return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16)
elif shapeA[1] == 0 and dimsA == 3:
return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16)
2022-07-22 21:41:05 +00:00
if dimsA == 2 and out is None:
out, Sout = get_transform_buffer(
(shapeA[0], shapeB[0]), dtype, A.device, "col32", "row"
)
2022-07-22 21:41:05 +00:00
elif dimsA == 3 and out is None:
out, Sout = get_transform_buffer(
(shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, "col32", "row"
)
2022-07-22 21:41:05 +00:00
assert dimsB != 3, "len(B.shape)==3 not supported"
assert A.device.type == "cuda"
assert B.device.type == "cuda"
2022-07-22 21:41:05 +00:00
assert A.dtype == torch.int8
assert B.dtype == torch.int8
assert out.dtype == dtype
assert SA[1] == "col32"
assert SB[1] in ["col_turing", "col_ampere"]
assert Sout[1] == "col32"
assert (
shapeA[-1] == shapeB[-1]
), f"Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}"
2022-07-22 21:41:05 +00:00
formatB = SB[1]
prev_device = A.device
torch.cuda.set_device(A.device)
ptr = CUBLAS_Context.get_instance().get_context(A.device)
ptrA = get_ptr(A)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
k = shapeA[-1]
lda = ct.c_int32(m * 32)
if formatB == "col_turing":
2022-07-22 21:41:05 +00:00
# turing: tiles with rows filled up to multiple of 8 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows + 7) // 8) * 8 * 32)
2022-07-22 21:41:05 +00:00
else:
# ampere: tiles with rows filled up to multiple of 32 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows + 31) // 32) * 32 * 32)
2022-07-22 21:41:05 +00:00
ldc = ct.c_int32(m * 32)
2022-07-22 21:41:05 +00:00
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
has_error = 0
ptrRowScale = get_ptr(None)
is_on_gpu([A, B, out])
2022-07-22 21:41:05 +00:00
if formatB == 'col_turing':
if dtype == torch.int32:
has_error = lib.cigemmlt_turing_32(
ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
)
2022-07-22 21:41:05 +00:00
else:
has_error = lib.cigemmlt_turing_8(
ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
)
elif formatB == "col_ampere":
2022-07-22 21:41:05 +00:00
if dtype == torch.int32:
has_error = lib.cigemmlt_ampere_32(
ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
)
2022-07-22 21:41:05 +00:00
else:
has_error = lib.cigemmlt_ampere_8(
ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc
)
2022-07-22 21:41:05 +00:00
if has_error == 1:
print(f'A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}')
2022-07-22 21:41:05 +00:00
raise Exception('cublasLt ran into an error!')
torch.cuda.set_device(prev_device)
return out, Sout
def mm_dequant(
A,
quant_state,
row_stats,
col_stats,
out=None,
new_row_stats=None,
new_col_stats=None,
bias=None
):
2022-07-22 21:41:05 +00:00
assert A.dtype == torch.int32
if bias is not None: assert bias.dtype == torch.float16
2022-07-22 21:41:05 +00:00
out_shape = quant_state[0]
if len(out_shape) == 3:
out_shape = (out_shape[0] * out_shape[1], out_shape[2])
if out is None:
out = torch.empty(out_shape, dtype=torch.float16, device=A.device)
if new_row_stats is None:
new_row_stats = torch.empty(
out_shape[0], dtype=torch.float32, device=A.device
)
if new_col_stats is None:
new_col_stats = torch.empty(
out_shape[1], dtype=torch.float32, device=A.device
)
assert (
new_row_stats.shape[0] == row_stats.shape[0]
), f"{new_row_stats.shape} vs {row_stats.shape}"
assert (
new_col_stats.shape[0] == col_stats.shape[0]
), f"{new_col_stats.shape} vs {col_stats.shape}"
2022-07-22 21:41:05 +00:00
prev_device = pre_call(A.device)
2022-07-22 21:41:05 +00:00
ptrA = get_ptr(A)
ptrOut = get_ptr(out)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNewRowStats = get_ptr(new_row_stats)
ptrNewColStats = get_ptr(new_col_stats)
ptrBias = get_ptr(bias)
2022-07-22 21:41:05 +00:00
numRows = ct.c_int32(out_shape[0])
numCols = ct.c_int32(out_shape[1])
is_on_gpu([A, row_stats, col_stats, out, new_row_stats, new_col_stats, bias])
lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, ptrBias, numRows, numCols)
post_call(prev_device)
2022-07-22 21:41:05 +00:00
return out
def get_colrow_absmax(
A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0
):
2022-07-22 21:41:05 +00:00
assert A.dtype == torch.float16
device = A.device
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0] * A.shape[1]
2022-07-22 21:41:05 +00:00
else:
rows = A.shape[0]
col_tiles = (cols + 255) // 256
tiled_rows = ((rows + 15) // 16) * 16
if row_stats is None:
row_stats = torch.empty(
(rows,), dtype=torch.float32, device=device
).fill_(-50000.0)
if col_stats is None:
col_stats = torch.empty(
(cols,), dtype=torch.float32, device=device
).fill_(-50000.0)
if nnz_block_ptr is None and threshold > 0.0:
nnz_block_ptr = torch.zeros(
((tiled_rows * col_tiles) + 1,), dtype=torch.int32, device=device
)
2022-07-22 21:41:05 +00:00
ptrA = get_ptr(A)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNnzrows = get_ptr(nnz_block_ptr)
rows = ct.c_int32(rows)
cols = ct.c_int32(cols)
prev_device = pre_call(A.device)
is_on_gpu([A, row_stats, col_stats, nnz_block_ptr])
2022-07-22 21:41:05 +00:00
lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols)
post_call(prev_device)
if threshold > 0.0:
nnz_block_ptr.cumsum_(0)
return row_stats, col_stats, nnz_block_ptr
class COOSparseTensor:
2022-07-22 21:41:05 +00:00
def __init__(self, rows, cols, nnz, rowidx, colidx, values):
assert rowidx.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colidx.numel() == nnz
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowidx = rowidx
self.colidx = colidx
self.values = values
class CSRSparseTensor:
2022-07-22 21:41:05 +00:00
def __init__(self, rows, cols, nnz, rowptr, colidx, values):
assert rowptr.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert colidx.numel() == nnz
assert rowptr.numel() == rows + 1
2022-07-22 21:41:05 +00:00
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowptr = rowptr
self.colidx = colidx
self.values = values
class CSCSparseTensor:
2022-07-22 21:41:05 +00:00
def __init__(self, rows, cols, nnz, colptr, rowidx, values):
assert colptr.dtype == torch.int32
assert rowidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colptr.numel() == cols + 1
2022-07-22 21:41:05 +00:00
self.rows = rows
self.cols = cols
self.nnz = nnz
self.colptr = colptr
self.rowidx = rowidx
self.values = values
2022-07-22 21:41:05 +00:00
def coo2csr(cooA):
values, counts = torch.unique(cooA.rowidx, return_counts=True)
values.add_(1)
rowptr = torch.zeros(
(cooA.rows + 1,), dtype=torch.int32, device=cooA.rowidx.device
)
2022-07-22 21:41:05 +00:00
rowptr.scatter_(index=values.long(), src=counts.int(), dim=0)
rowptr.cumsum_(0)
return CSRSparseTensor(
cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values
)
2022-07-22 21:41:05 +00:00
def coo2csc(cooA):
val, col2rowidx = torch.sort(cooA.colidx)
rowidx = cooA.rowidx[col2rowidx]
values = cooA.values[col2rowidx]
colvalues, counts = torch.unique(val, return_counts=True)
colvalues.add_(1)
colptr = torch.zeros(
(cooA.cols + 1,), dtype=torch.int32, device=cooA.colidx.device
)
2022-07-22 21:41:05 +00:00
colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0)
colptr.cumsum_(0)
return CSCSparseTensor(
cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values
)
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
def coo_zeros(rows, cols, nnz, device, dtype=torch.half):
rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
colidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
values = torch.zeros((nnz,), dtype=dtype, device=device)
return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values)
def double_quant(
A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0
):
2022-07-22 21:41:05 +00:00
device = A.device
assert A.dtype == torch.half
assert device.type == "cuda"
2022-07-22 21:41:05 +00:00
prev_device = pre_call(A.device)
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0] * A.shape[1]
2022-07-22 21:41:05 +00:00
else:
rows = A.shape[0]
if row_stats is None or col_stats is None:
row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(
A, threshold=threshold
)
2022-07-22 21:41:05 +00:00
if out_col is None:
out_col = torch.zeros(A.shape, device=device, dtype=torch.int8)
if out_row is None:
out_row = torch.zeros(A.shape, device=device, dtype=torch.int8)
2022-07-22 21:41:05 +00:00
coo_tensor = None
ptrA = get_ptr(A)
ptrColStats = get_ptr(col_stats)
ptrRowStats = get_ptr(row_stats)
ptrOutCol = get_ptr(out_col)
ptrOutRow = get_ptr(out_row)
is_on_gpu([A, col_stats, row_stats, out_col, out_row])
2022-07-22 21:41:05 +00:00
if threshold > 0.0:
nnz = nnz_row_ptr[-1].item()
if nnz > 0:
coo_tensor = coo_zeros(
A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device
)
2022-07-22 21:41:05 +00:00
ptrRowIdx = get_ptr(coo_tensor.rowidx)
ptrColIdx = get_ptr(coo_tensor.colidx)
ptrVal = get_ptr(coo_tensor.values)
ptrRowPtr = get_ptr(nnz_row_ptr)
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
ptrRowIdx,
ptrColIdx,
ptrVal,
ptrRowPtr,
ct.c_float(threshold),
ct.c_int32(rows),
ct.c_int32(cols),
)
2022-07-22 21:41:05 +00:00
val, idx = torch.sort(coo_tensor.rowidx)
coo_tensor.rowidx = val
coo_tensor.colidx = coo_tensor.colidx[idx]
coo_tensor.values = coo_tensor.values[idx]
else:
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
None,
None,
None,
None,
ct.c_float(0.0),
ct.c_int32(rows),
ct.c_int32(cols),
)
2022-07-22 21:41:05 +00:00
else:
lib.cdouble_rowcol_quant(
ptrA,
ptrRowStats,
ptrColStats,
ptrOutCol,
ptrOutRow,
None,
None,
None,
None,
ct.c_float(threshold),
ct.c_int32(rows),
ct.c_int32(cols),
)
2022-07-22 21:41:05 +00:00
post_call(prev_device)
return out_row, out_col, row_stats, col_stats, coo_tensor
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
prev_device = pre_call(A.device)
2022-07-22 21:41:05 +00:00
if state is None: state = (A.shape, from_order)
else: from_order = state[1]
if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
else: new_state = (state[0], to_order) # (shape, order)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
else:
dim1 = ct.c_int32(shape[0] * shape[1])
2022-07-22 21:41:05 +00:00
dim2 = ct.c_int32(shape[2])
is_on_gpu([A, out])
2022-07-22 21:41:05 +00:00
if to_order == 'col32':
if transpose:
lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "col_turing":
2022-07-22 21:41:05 +00:00
if transpose:
lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "col_ampere":
2022-07-22 21:41:05 +00:00
if transpose:
lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == "row":
if from_order == "col_turing":
2022-07-22 21:41:05 +00:00
lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
elif from_order == "col_ampere":
2022-07-22 21:41:05 +00:00
lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
else:
raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}')
post_call(prev_device)
2022-07-22 21:41:05 +00:00
return out, new_state
2022-07-22 21:41:05 +00:00
def spmm_coo(cooA, B, out=None):
if out is None:
out = torch.empty(
(cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype
)
2022-07-22 21:41:05 +00:00
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0]
transposed_B = False if B.is_contiguous() else True
2022-07-22 21:41:05 +00:00
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
ptr = Cusparse_Context.get_instance().context
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out])
2022-07-22 21:41:05 +00:00
lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B))
return out
2022-07-22 21:41:05 +00:00
def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None):
if out is None:
out = torch.zeros(
(cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype
)
2022-07-22 21:41:05 +00:00
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}"
2022-07-22 21:41:05 +00:00
transposed_B = False if B.is_contiguous() else True
2022-07-22 21:41:05 +00:00
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
values, counts = torch.unique(cooA.rowidx, return_counts=True)
offset = counts.cumsum(0).int()
max_count, max_idx = torch.sort(counts, descending=True)
max_idx = max_idx.int()
max_count = max_count.int()
assert (
max_count[0] <= 32
), f"Current max count per row is 8 but found {max_count[0]}."
2022-07-22 21:41:05 +00:00
assert B.dtype in [torch.float16, torch.int8]
ptrOffset = get_ptr(offset)
ptrMaxCount = get_ptr(max_count)
ptrMaxIdx = get_ptr(max_idx)
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
ptrDequantStats = get_ptr(dequant_stats)
cnnz_rows = ct.c_int32(counts.numel())
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
crowsB = ct.c_int32(B.shape[1])
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats])
2022-07-22 21:41:05 +00:00
if B.dtype == torch.float16:
lib.cspmm_coo_very_sparse_naive_fp16(
ptrMaxCount,
ptrMaxIdx,
ptrOffset,
ptrRowidx,
ptrColidx,
ptrValues,
ptrB,
ptrC,
ptrDequantStats,
cnnz_rows,
cnnz,
crowsA,
crowsB,
ccolsB,
)
2022-07-22 21:41:05 +00:00
elif B.dtype == torch.int8:
lib.cspmm_coo_very_sparse_naive_int8(
ptrMaxCount,
ptrMaxIdx,
ptrOffset,
ptrRowidx,
ptrColidx,
ptrValues,
ptrB,
ptrC,
ptrDequantStats,
cnnz_rows,
cnnz,
crowsA,
crowsB,
ccolsB,
)
# else: assertion error
2022-07-22 21:41:05 +00:00
return out
C = 127.0
def vectorwise_quant(x, dim=1, quant_type="vector"):
if quant_type == "linear":
2022-07-22 21:41:05 +00:00
max1 = torch.abs(x).max().float()
xq = torch.round(x / max1 * 127).to(torch.int8)
2022-07-22 21:41:05 +00:00
return xq, max1
elif quant_type in ["vector", "row"]:
2022-07-22 21:41:05 +00:00
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
xq = torch.round(x * (C / max1)).to(torch.int8)
2022-07-22 21:41:05 +00:00
return xq, max1
elif quant_type == "zeropoint":
2022-07-22 21:41:05 +00:00
dtype = x.dtype
x = x.float()
dyna = x.max() - x.min()
if dyna == 0:
dyna = 1
qx = 255.0 / dyna
2022-07-22 21:41:05 +00:00
minx = x.min()
zpx = torch.round(minx * qx)
x = torch.round(qx * x - zpx) + zpx
2022-07-22 21:41:05 +00:00
return x, qx
elif quant_type in ["vector-zeropoint", "row-zeropoint"]:
2022-07-22 21:41:05 +00:00
dtype = x.dtype
x = x.float()
dyna = torch.amax(x, dim=dim, keepdim=True) - torch.amin(
x, dim=dim, keepdim=True
)
dyna[dyna == 0] = 1
qx = 255.0 / dyna
2022-07-22 21:41:05 +00:00
minx = torch.amin(x, dim=dim, keepdim=True)
zpx = torch.round(minx * qx)
x = torch.round(qx * x - zpx) + zpx
2022-07-22 21:41:05 +00:00
return x, qx
elif quant_type == "truncated-vector":
2022-07-22 21:41:05 +00:00
with torch.no_grad():
absx = torch.abs(x)
max1 = torch.amax(absx, dim=dim, keepdim=True)
max1 = max1 * 0.7
idx = absx > max1.expand_as(absx)
2022-07-22 21:41:05 +00:00
sign = torch.sign(x[idx])
x[idx] = max1.expand_as(absx)[idx] * sign
xq = torch.round(x / max1 * C).to(torch.int8)
2022-07-22 21:41:05 +00:00
return xq, max1
else:
return None
2022-07-22 21:41:05 +00:00
def vectorwise_dequant(xq, max1, quant_type="vector"):
if quant_type == "vector":
x = (xq / C * max1).to(torch.float32)
2022-07-22 21:41:05 +00:00
return x
else:
return None
2022-07-22 21:41:05 +00:00
def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type="vector"):
if quant_type == "linear":
norm = S1 * S2 / (C * C)
2022-07-22 21:41:05 +00:00
# double cast needed to prevent overflows
return (xq.float() * norm).to(dtype)
elif quant_type == "zeropoint":
norm = 1.0 / (S1 * S2)
return (xq.float() * norm).to(dtype)
elif quant_type == "row-zeropoint":
norm = 1.0 / (S1 * S2)
2022-07-22 21:41:05 +00:00
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
2022-07-22 21:41:05 +00:00
if len(S1.shape) == 2:
x *= norm
else:
x *= norm
return x.to(dtype)
elif quant_type == "vector-zeropoint":
2022-07-22 21:41:05 +00:00
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
2022-07-22 21:41:05 +00:00
if len(S1.shape) == 2:
x *= 1.0 / S1
2022-07-22 21:41:05 +00:00
else:
x *= 1.0 / S1
x *= 1.0 / S2.t()
2022-07-22 21:41:05 +00:00
return x.to(dtype)
elif quant_type == "row":
2022-07-22 21:41:05 +00:00
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
2022-07-22 21:41:05 +00:00
if len(S1.shape) == 2:
x *= S1 * S2 / (C * C)
2022-07-22 21:41:05 +00:00
else:
x *= S1 * S2 / (C * C)
2022-07-22 21:41:05 +00:00
return x.to(dtype)
elif quant_type in ["truncated-vector", "vector"]:
2022-07-22 21:41:05 +00:00
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2:
S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2:
S2 = S2.squeeze(0)
2022-07-22 21:41:05 +00:00
if len(S1.shape) == 2:
x *= S1 / C
2022-07-22 21:41:05 +00:00
else:
x *= S1 / C
x *= S2 / C
2022-07-22 21:41:05 +00:00
return x.to(dtype)
else:
return None
2022-07-22 21:41:05 +00:00
def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half):
offset = B.float().t().sum(0) * (SA[0] + SA[1])
2022-07-22 21:41:05 +00:00
x = xq.float()
if len(xq.shape) == 2 and len(SB.shape) == 3:
SB = SB.squeeze(0)
2022-07-22 21:41:05 +00:00
if len(SB.shape) == 2:
x *= SB.t() / 127
2022-07-22 21:41:05 +00:00
else:
x *= SB / 127
x *= SA[1] / 127
x += offset
2022-07-22 21:41:05 +00:00
return x.to(dtype)
def extract_outliers(A, SA, idx):
shapeA = SA[0]
formatA = SA[1]
assert formatA in ["col_turing", "col_ampere"]
assert A.device.type == "cuda"
out = torch.zeros(
(shapeA[0], idx.numel()), dtype=torch.int8, device=A.device
)
idx_size = ct.c_int32(idx.numel())
rows = ct.c_int32(shapeA[0])
cols = ct.c_int32(shapeA[1])
ptrA = get_ptr(A)
ptrIdx = get_ptr(idx)
ptrOut = get_ptr(out)
prev_device = pre_call(A.device)
if formatA == 'col_turing':
lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
elif formatA == "col_ampere":
lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
post_call(prev_device)
return out
2023-04-27 22:12:49 +00:00
def pipeline_test(A, batch_size):
out = torch.zeros_like(A)
lib.cpipeline_test(get_ptr(A), get_ptr(out), ct.c_size_t(A.numel()), ct.c_size_t(batch_size))
return out