vall-e/vall_e/config.py

1122 lines
45 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
import copy
#import diskcache
2023-08-02 21:53:35 +00:00
import h5py
import json
import os
import subprocess
import sys
import time
import argparse
import yaml
import random
import logging
import itertools
2023-08-02 21:53:35 +00:00
import torch
import numpy as np
from dataclasses import asdict, dataclass, field
2023-08-02 21:53:35 +00:00
from functools import cached_property
from pathlib import Path
2023-08-14 03:56:28 +00:00
from .utils.distributed import world_size
from .utils.io import torch_load
from .utils import set_seed, prune_missing, md5_hash
2023-08-02 21:53:35 +00:00
@dataclass()
class BaseConfig:
yaml_path: str | None = None # path passed in through --yaml
2023-08-02 21:53:35 +00:00
@property
def cfg_path(self):
if self.yaml_path:
return Path(self.yaml_path.parent)
return Path(__file__).parent.parent / "data"
@property
def rel_path(self):
2023-08-02 21:53:35 +00:00
return Path(self.cfg_path)
@property
def cache_dir(self):
return self.rel_path / ".cache"
2024-04-29 03:28:29 +00:00
@property
def data_dir(self):
return self.rel_path / "data"
2024-04-29 03:28:29 +00:00
@property
def metadata_dir(self):
return self.rel_path / "metadata"
2024-04-29 03:28:29 +00:00
2023-08-02 21:53:35 +00:00
@property
def ckpt_dir(self):
return self.rel_path / "ckpt"
2023-08-02 21:53:35 +00:00
@property
def log_dir(self):
return self.rel_path / "logs" / str(self.start_time)
2023-08-02 21:53:35 +00:00
@cached_property
def start_time(self):
return int(time.time())
@cached_property
def git_commit(self):
try:
cmd = "git rev-parse HEAD"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
@cached_property
def git_status(self):
try:
cmd = "git status"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
def dumps(self):
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
data = {k: v for k, v in data.items() if not callable(v)}
return json.dumps(data, indent=2, default=str)
def dump(self, path=None):
if path is None:
path = self.log_dir / "cfg.json"
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
f.write(self.dumps())
# ick
@classmethod
def prune_missing( cls, yaml ):
default = cls(**{})
default.format()
yaml, missing = prune_missing( source=default, dest=yaml )
if missing:
_logger.warning(f'Missing keys in YAML: {missing}')
return yaml
2023-08-02 21:53:35 +00:00
@classmethod
def from_yaml( cls, yaml_path ):
state = {}
state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8"))
state.setdefault("yaml_path", yaml_path)
state = cls.prune_missing( state )
return cls(**state)
2023-08-02 21:53:35 +00:00
@classmethod
def from_model( cls, model_path, lora_path=None ):
if not model_path.exists():
raise Exception(f'Model path does not exist: {model_path}')
# load state dict and copy its stored model config
model_kwargs = { "attention": "auto", "training": False, "teacher": False }
model_state_dict = [ torch_load( model_path )["config"] | { "path": model_path } | model_kwargs ] if model_path and model_path.exists() else []
lora_state_dict = [ torch_load( lora_path )["config"] | { "path": lora_path } ] if lora_path and lora_path.exists() else []
state = { "models": model_state_dict, "loras": lora_state_dict, "trainer": { "load_state_dict": True } }
return cls(**state)
2023-08-02 21:53:35 +00:00
@classmethod
def from_cli(cls, args=sys.argv):
# legacy support for yaml=`` format
for i, arg in enumerate(args):
if arg.startswith("yaml"):
args[i] = f'--{arg}'
2023-08-02 21:53:35 +00:00
2024-10-18 18:19:36 +00:00
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too
args, unknown = parser.parse_known_args(args=args)
2023-08-02 21:53:35 +00:00
if args.model:
return cls.from_model( args.model, args.lora )
if args.yaml:
2024-10-18 18:19:36 +00:00
return cls.from_yaml( args.yaml )
2023-08-02 21:53:35 +00:00
return cls(**{})
2023-08-02 21:53:35 +00:00
def __repr__(self):
return str(self)
def __str__(self):
return self.dumps()
@dataclass()
class Dataset:
training: list[Path] = field(default_factory=lambda: []) # paths to load into the training dataset
validation: list[Path] = field(default_factory=lambda: []) # paths to load into the validation dataset
noise: list[Path] = field(default_factory=lambda: []) # paths to load into the noise dataset
2023-08-02 21:53:35 +00:00
# to-do: replace these since I feel this can be a bottleneck
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" # function eval'd to extract a speaker's name from an utternace path
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" # function eval'd to extract a speaker's group from an utternace path
# to-do: validate if I can ignore this since this is an artifact from when I only saved phonemes and encoded audio, and no metadata
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
2023-08-02 21:53:35 +00:00
use_hdf5: bool = False # whether to load from an HDF5 dataset
hdf5_name: str = "data.h5" # file name to load the HDF5 dataset
hdf5_flag: str = "a" # flag to load the HDF5 file, automatically adjusted anyways
use_metadata: bool = False # use genretaed metadata to aid in dataset loading
validate: bool = True # validate each utterance on wheter it can be included based on duration range caps
workers: int = 8 # number of dataloader workers to spawn
cache: bool = True # use diskcache to cache the dataset
2023-08-02 21:53:35 +00:00
min_utterances: int = 2 # minimum number of utterances a speaker can have
max_utterances: int = 0 # max number of utterances a speaker can have (0 to disable)
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) # the duration range an utterance can be to be included in the dataset
sample_type: str = "path" # path | speaker
sample_order: str = "interleaved" # duration
sample_shuffle: bool = True # shuffles the indices in the sampler
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
# for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough
# for a full sized model with 24GiB of VRAM for Encodec, 380 seconds is 80% VRAM consumed (but it might be limited by batch size)
prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0]) # the duration range the input prompts can be
prompt_max_samples: int = 3 # maximum number of utterances that can be included in an input prompt for training
prompt_continuous_utterance_p: float = 0.0 # probability to use the target utterance as an input prompt rather than using a different utterance
prompt_similar_p: float = 0.75 # odds of sampling for a similar prompt instead of a random prompt
prompt_similar_top_k: int = 1 # top-k similar candidates to sample from
prompt_similar_top_k_offset: int = 0 # offset from the top-k to sample from
2024-10-18 14:40:06 +00:00
prompt_inject_noise: bool = False # adds noise to the input prompt waveform to try and vary things
resps_max_samples: int = 1 # number of samples to target for training
resps_append_p: float = 1.0 # probability to append another sample to the training target
resps_pad_silence_p: float = 0.0 # probability to pad resp with silence to fit within the next window
tasks_list: list[str] = field(default_factory=lambda: ["tts"]) # list of tasks to train against
reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes
reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
noise_scale: float = 0.25 # scaling noise value
retokenize_text: bool = False
_frames_per_second: int = 0 # allows setting your own hint
def hash_key(self, *args):
return md5_hash([ self.use_hdf5, self.min_duration, self.max_duration ] + [*args])
@cached_property
def frames_per_second(self):
if self._frames_per_second > 0:
return self._frames_per_second
if cfg.audio_backend == "dac":
if cfg.sample_rate == 44_100:
return 87
if cfg.sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
@property
def min_phones(self):
return self.phones_range[0]
@property
def max_phones(self):
return self.phones_range[1]
@property
def min_duration(self):
return self.duration_range[0]
@property
def max_duration(self):
return self.duration_range[1]
# collection of experimental variables that should not be tampered with unless you know what you're doing
@dataclass()
class ModelExperimentalSettings:
hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal)
split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head rather than sharing one for all RVQ levels (to-do: also split for text/prom)
audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level
# a model trained not summing audio embeddings *can* have this enabled without any apparent issues
# a model trained to sum *cannot* have this disabled without any apparent issues, or at least the ar+nar-retnet-8 can't.
# in theory a model that is trained to sum embeddings can peform better due to "seeing" previous levles (due to the R in RVQ standing for residuals...), but in practice it seems fine to not do so
2024-06-30 16:00:12 +00:00
audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings
kv_heads: int = 0 # MHA or GQA (for supported backends)
rvq_levels_p: str | list = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely
rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range for LoRAs, isn't necesary
unified_position_ids: bool = True # False will generate position IDs partitioned for each section
tie_classifier_to_embedding: bool = False # Ties the classifier output to their respective embeddings, this does not seem to do anything good in testing
# performs token dropout to compensate for errors
token_dropout_error: float = 0.0 # probability to nudge a token by ±1
token_dropout_rate: float = 0.0 # probability to randomly set a token to a special dropout value
token_dropout_rvq_levels: list = field(default_factory=lambda: [1,8]) # determines which levels to do dropout, by default do not do dropout on RVQ level 0
causal_size: int = 1 # experimental setting to see if I can just do parallel decoding in chunks instead of one-at-a-time without resorting to exotic solutions
# VALL-E 2's approach of "combining token embeddings to group them" sounds terribad for a shared AR/NAR model
# however, introducing partial parallel decoding for the AR maybe maybe MAYBE might help try and unify the AR/NAR tasks better, MAYBE
# it just seems like a bitch to try and train something worthwhile with it, since there's crackles every other token
# RetNet's chunked inferencing might be a better place for this
2024-11-10 18:19:48 +00:00
masking_train_p: float = 0.0 # odds of training with masking
masking_train_rvq_levels: list = field(default_factory=lambda: [0,0]) # determines which levels to do mask training on
masking_ratio: str | float = 0.8 # sets a masking ratio, "random" will randomly pick, "rand" will pick between [0.2, 0.8]
2024-11-16 21:49:06 +00:00
ignore_inputs_for_loss: bool = True # only calculate the loss on the outputs since thats what matters, as the inputs that do have loss calculated upon affects the loss for the entire sequence
2024-10-31 18:24:48 +00:00
noncausal_masks: bool = False # to correct an oversight with Llama always using causal masks......
# classifier-free guidance training settings
2024-11-10 18:19:48 +00:00
cfg_cond_dropout_p: float = 0.0 # 0.2 # probability to drop out text and audio during training
cfg_text_dropout_p: float = 0.0 # 0.0 # probability to drop out input audio prompt during training
cfg_prom_dropout_p: float = 0.0 # 0.3 # probability to drop out input audio prompt during training
2024-11-10 00:04:59 +00:00
# failed experiment
2024-10-31 18:24:48 +00:00
layerskip: bool = False # layerskip compatible model (or training for)
#layerskip_rvq_levels: list = field(default_factory=lambda: []) # RVQ levels to train / inference layerskip for (to-do: implement, see if it matters)
layerskip_r: int = 2 # number of layers to factor into early-exit loss calc
2024-10-31 18:24:48 +00:00
layerskip_p_max: float = 0.1 # maximum probabilty to dropout the last layer, used for calculating layer dropout probabilities
layerskip_e_scale: float = 0.2 # early-exit loss scalar value
2024-06-04 02:28:49 +00:00
# I really need to clean this up
2023-08-02 21:53:35 +00:00
@dataclass()
class Model:
name: str = "ar+nar" # vanity name for the model
version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings
size: str | dict = "full" # preset string or explicitly defined dimensionality
resp_levels: int = 8 # RVQ-bin levels this model supports
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused)
langs: int = 1 # defined languages (semi-unused)
tones: int = 1 # defined tones (unsued)
experts: int = 1 # for mixtral / retnet-ts
arch_type: str = "llama" # underling LM architecture used
training: bool = False # I really need to attend to this
teacher: bool = False # if this is to be treated as a teacher
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
attention: str = "auto" # for llama arch_types: attention used
2024-05-11 21:31:05 +00:00
dropout: float = 0.1 # adjustable dropout value
path: Path | None = None
#loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good
2024-06-05 04:48:51 +00:00
loss_factors: dict = field(default_factory=lambda: {})
capabilities: list = field(default_factory=lambda: ["ar", "nar"]) # + ["lang", "tone"] if you have your dataset labeled for such
kwargs: dict = field(default_factory=lambda: {})
experimental: dict | ModelExperimentalSettings | None = None # experimental settings
2023-08-02 21:53:35 +00:00
def get(self, name=None):
return [ self ] if not name or self.name == name else []
def loss_factor(self, k):
return self.loss_factors.get(k, 0.0)
@property
def max_levels(self):
# return RVQ level range
if self.experimental is not None and self.experimental.rvq_level_range:
return self.experimental.rvq_level_range[-1]
return self.resp_levels
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.optimizations.fp8 else 0
2023-08-02 21:53:35 +00:00
@property
def full_name(self):
name = [ self.name ]
if isinstance(self.size, dict):
if hasattr(self.size, "label") and self.size['label']:
name.append(f"{self.size['label']}")
2024-11-21 21:07:46 +00:00
elif isinstance(self.size, str) and self.size not in ["full","extended"]:
2023-08-02 21:53:35 +00:00
name.append(self.size)
2024-06-06 01:53:10 +00:00
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))
2023-08-02 21:53:35 +00:00
if cfg.optimizations.bitnet:
name.append("bitnet")
2024-06-30 16:11:58 +00:00
name.append(f'{self.resp_levels}')
2023-08-02 21:53:35 +00:00
return "-".join(name)
@property
def tokens(self):
2024-06-06 01:53:10 +00:00
return self.audio_tokens
2024-06-06 01:53:10 +00:00
@property
def audio_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"):
return self.size['audio_tokens']
2023-08-02 21:53:35 +00:00
return 1024
2024-06-06 01:53:10 +00:00
@property
def text_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"):
return self.size['text_tokens']
return 256
2023-08-02 21:53:35 +00:00
@property
def dim(self):
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
return self.size['dim']
if isinstance(self.size, float):
return math.floor(1024 * self.size)
2023-08-02 21:53:35 +00:00
if self.size == "quarter":
return 256
if self.size == "half":
return 512
2023-09-02 02:33:51 +00:00
return 1024
2023-08-02 21:53:35 +00:00
@property
def heads(self):
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
return self.size['heads']
if isinstance(self.size, float):
return math.floor(16 * self.size)
2023-08-02 21:53:35 +00:00
if self.size == "quarter":
return 4
if self.size == "half":
return 8
2023-09-02 02:33:51 +00:00
return 16
2023-08-02 21:53:35 +00:00
@property
def layers(self):
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
return self.size['layers']
2023-09-02 02:33:51 +00:00
if self.size == "double":
return 24
2024-11-21 21:07:46 +00:00
if self.size == "extended":
return 16
2023-08-02 21:53:35 +00:00
return 12
@property
def activation_checkpointing(self):
return cfg.trainer.activation_checkpointing
2024-06-04 02:28:49 +00:00
@property
def gradient_checkpointing(self):
return cfg.trainer.gradient_checkpointing
@property
def lora_policy(self):
include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever)
exclude = []
if self.arch_type == "llama":
include = ["self_attn", "mlp"] # target only the attention + mlp
exclude = ["self_attn.k_proj"] # common literature says to ignore it
if self.arch_type == "retnet":
include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff
exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet
return dict(include=include, exclude=exclude)
# to-do: derive default arguments from here
@property
def get_kwargs(self, type):
return self.kwargs
# should be renamed to Adapters
@dataclass()
class LoRA:
name: str = "lora" # vanity name
# to-do: find sane default values
rank: int = 128 # rank for the LoRA
alpha: int = 128 # rank for the LoRA
training: bool = True #
embeddings: bool = False # train the embedding too
parametrize: bool = False # whether to use the parameterized pathway for LoRAs or not
rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA
path: Path | None = None
@property
def full_name(self):
name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ]
return "-".join(name)
# actually not needed anymore
def active_level( self, level ):
if not self.rvq_levels:
return True
return level in self.rvq_levels
2024-12-07 05:53:46 +00:00
2023-08-02 21:53:35 +00:00
@dataclass()
class Hyperparameters:
batch_size: int = 8 # number of samples per training batch
gradient_accumulation_steps: int = 32 # number of steps to accumulate gradients before updating
2024-11-06 19:51:28 +00:00
gradient_clipping: int | float = 1.0 # largest size a gradient norm can be
2023-08-02 21:53:35 +00:00
optimizer: str = "Adamw" # optimizer to use, should be 'Prodigyopt" now
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt
warmup_steps: int = 0 # number of steps to warm up the optimizer before performing updates, I think, this is just passed to deepspeed
2023-08-02 21:53:35 +00:00
scheduler: str = "" # scheduler to use, currently don't ever use one so this doesn't really matter
scheduler_type: str = "" # deprecated
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
2024-05-10 02:25:40 +00:00
autotune: bool = False # to do deepspeed's autotuning
2024-05-10 02:25:40 +00:00
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
torch_optimizer: bool = False # if the requested optimizer is torch-derived rather than deepspeed supplied
torch_scheduler: bool = False # if the requested scheduler is torch-derived rather than deepspeed-supplied
2024-12-07 05:53:46 +00:00
teacher_alpha: float = 0.5 # mixing factor when performing knowledge distillation
teacher_temperature: float = 1.0
teacher_loss_fn: str = "mse" # kl | mse, use either kl_div or mse_loss (most implementations use kl, some literature says you can use mse)
2023-08-02 21:53:35 +00:00
@dataclass()
class Evaluation:
batch_size: int = 64 # number of samples per batch during eval / val
frequency: int = 250 # do eval / val every X iterations
size: int = 64 # number of samples to generate during eval / val
kwargs: dict = field(default_factory=lambda: {}) # inferencing kwargs
# necessary in order to make it not confusing with requiring not-directyl exposed arguments passed to the model
@cached_property
def ar_kwargs( self ):
return dict(
max_steps=self.kwargs.get("max_ar_steps", 500),
temperature=self.kwargs.get("ar_temperature", 1.0),
min_temperature=self.kwargs.get("min_ar_temperature", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0),
length_penalty=self.kwargs.get("length_penalty", 0),
beam_width=self.kwargs.get("beam_width", 0),
mirostat_tau=self.kwargs.get("mirostat_tau", 0),
mirostat_eta=self.kwargs.get("mirostat_eta", 0),
dry_multiplier=self.kwargs.get("dry_multiplier", 0),
dry_base=self.kwargs.get("dry_base", 0),
dry_allowed_length=self.kwargs.get("dry_allowed_length", 0),
entropix=self.kwargs.get("entropix_sampling", False),
)
@cached_property
def nar_kwargs( self ):
return dict(
max_levels=self.kwargs.get("max_nar_levels", 0),
temperature=self.kwargs.get("nar_temperature", 0.0),
min_temperature=self.kwargs.get("min_nar_temp", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0.0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0.0),
)
2023-08-04 01:26:36 +00:00
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0 # doesn't seem to work
use_compression_training: bool = False # cope
compression_bits: int = 8 # cope
inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead
amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently)
loss_scale_window: int = 100
min_loss_scale: float = 8192.0
config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
2023-08-04 01:26:36 +00:00
@cached_property
def ds_cfg(self):
optimizer_params = cfg.hyperparameters.optimizer_params
if 'lr' not in optimizer_params:
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
scheduler_params = cfg.hyperparameters.scheduler_params
if 'warmup_num_steps' not in scheduler_params:
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
2023-08-04 01:26:36 +00:00
if 'total_num_steps' not in scheduler_params:
2023-08-04 01:26:36 +00:00
scheduler_params['total_num_steps'] = cfg.trainer.iterations
2024-05-10 02:25:40 +00:00
autotune_params = cfg.hyperparameters.autotune_params
if "enabled" not in autotune_params:
autotune_params['enabled'] = True
if "results_dir" not in autotune_params:
autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" )
2024-05-10 02:25:40 +00:00
if "exps_dir" not in autotune_params:
autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" )
2024-05-10 02:25:40 +00:00
# DeepSpeed fp16 is incompatible with its AMP
2024-05-12 03:58:38 +00:00
if cfg.trainer.weight_dtype.lower() == "float16":
self.amp = False
# disable local AMP
if self.amp:
cfg.trainer.amp = False
2023-08-04 01:26:36 +00:00
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": optimizer_params,
2023-09-07 14:14:03 +00:00
} if not cfg.hyperparameters.torch_optimizer else None,
2023-08-04 01:26:36 +00:00
"scheduler": {
"type": cfg.hyperparameters.scheduler,
2023-08-04 01:26:36 +00:00
"params": scheduler_params,
} if not cfg.hyperparameters.torch_scheduler else None,
2023-08-04 01:26:36 +00:00
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
2024-05-12 03:58:38 +00:00
"enabled": cfg.trainer.weight_dtype.lower() == "float16",
"auto_cast": True, # ???
"loss_scale_window": self.loss_scale_window, # raise every 100 consecutive good steps
"min_loss_scale": self.min_loss_scale, # loss scale hitting 8K fries the model, 16K is fine but 32K is comfy
"loss_scale": 0.0 if cfg.trainer.scale_loss else 1.0,
},
2023-08-04 01:26:36 +00:00
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
2023-08-04 01:26:36 +00:00
},
"amp": {
"enabled": self.amp,
2024-05-10 02:25:40 +00:00
},
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
2023-08-04 01:26:36 +00:00
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
2023-08-04 01:26:36 +00:00
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
2023-08-19 01:58:07 +00:00
"start_bits": self.compression_bits,
"target_bits": self.compression_bits,
2023-08-04 01:26:36 +00:00
"quantization_period": 0
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"aq1": {
"params": {
"bits": self.compression_bits,
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
2023-08-04 01:26:36 +00:00
}
}
},
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
2023-08-16 02:58:16 +00:00
},
"zero_quantized_weights": self.use_compression_training,
"zero_hpz_partition_size": world_size(),
"zero_quantized_gradients": self.use_compression_training,
2023-08-04 01:26:36 +00:00
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./data/ds_config.json"):
ds_cfg.update(json.loads(open("./data/ds_config.json", "r", encoding="utf-8")).read())
else:
ds_cfg.update(self.config)
2023-08-04 01:26:36 +00:00
return ds_cfg
2023-08-02 21:53:35 +00:00
@dataclass()
2023-08-02 21:53:35 +00:00
class Trainer:
iterations: int = 1_000_000 # maximum iterations to train
2023-08-02 21:53:35 +00:00
save_tag: str = "step" # name to save checkpoints under, "step" will save as current step count
load_tag: str | None = None # tag to load checkpoint from; if None: will check against contents of `./ckpt/{model-name}/latest` for the checkpoint name
2023-08-02 21:53:35 +00:00
save_on_oom: bool = True # save if an OOM error is raised
save_on_quit: bool = True # save when quitting training
export_on_save: bool = False # export weights to local `fp32.pth` state_dict on saving a checkpoint
export_on_quit: bool = False # export weights to local `fp32.pth` state_dict on quitting training
save_frequency: int = 100 # frequency to save every X iterations
2023-08-02 21:53:35 +00:00
keep_last_checkpoints: int = 0 # number of checkpoints to keep, prunes oldest ones
load_state_dict: bool = False # loads `fp32.pth` state_dict, will automatically be done if a checkpoint is not found but `fp32.pth` exists
load_states: bool = True #
strict_loading: bool = False # sets strict_loading=True when loading the state dict
load_module_only: bool = False #
restart_step_count: bool = False # clears the training stats when loading a checkpoint
resize_modules: bool = False # automatically resizes
2023-08-02 21:53:35 +00:00
activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing
gradient_checkpointing: bool = True # enables gradient checkpointing to save VRAM at the cost of slightly reduced performance when training
check_for_oom: bool = True # checks for OOMs thrown during forward/backwards
gc_mode: str | None = None # deprecated, but marks when to do GC
2023-08-02 21:53:35 +00:00
wandb: bool = False # use wandb, if available
weight_dtype: str = "float16" # dtype to have the model under
amp: bool = False # automatic mixed precision
ddp: bool = False # torch's internal DDP, automatically set if local backend is used and multiple GPUs are requested
2024-08-09 16:38:08 +00:00
#scale_loss: bool = False # whether to perform loss scaling (for FP16 training) (it actually seems more harmful than not for this specific workload)
2023-08-02 21:53:35 +00:00
load_webui: bool = False # load the web UI to allow inferencing during training, to-do: actually make this work
backend: str = "local" # training backend to use. currently supports "local" | "deepspeed"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) # deepspeed settings
2023-08-02 21:53:35 +00:00
2023-08-05 03:22:15 +00:00
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
2023-08-05 03:22:15 +00:00
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
2023-08-05 03:22:15 +00:00
return torch.float32
@cached_property
def scale_loss(self):
# currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways)
return self.dtype == torch.float16
2023-08-02 23:36:26 +00:00
@dataclass()
class Inference:
backend: str = "local" # backend to use when inferencing
weight_dtype: str = "float16" # dtype to load the model under
amp: bool = True # automatic mixed precision during inferencing
2023-08-21 02:36:02 +00:00
normalize: bool = False # to-do: actually normalize input / output audio, I believe this might cause issues though
2023-08-02 23:36:26 +00:00
@property
2023-08-21 02:36:02 +00:00
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
2023-09-10 03:27:20 +00:00
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
2023-08-21 02:36:02 +00:00
return torch.float32
2023-08-02 23:36:26 +00:00
@dataclass()
class Optimizations:
injects: bool = False # overwrites default torch classes (not recommended)
replace: bool = False # replaces modules in place with the optimized version (recommended)
compile: bool | str = False # runs torch.compile on the model
2023-08-02 23:36:26 +00:00
linear: bool = True # inject/replace linear for BnB
embedding: bool = True # inject/replace embedding for BnB
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
bitsandbytes: bool = False # use bitsandbytes
dadaptation: bool = False # use dadaptation optimizer
bitnet: bool = False # use bitnet
fp8: bool = False # use fp8
# to-do: validate this madness works still, I don't remember what schizodemon told me to do this
model_offloading: dict | None = None # automatically splits the model over a list of devices
# example: {"include":["model"], "limits": [ (6 * 1024) * (1024 ** 2), -1 ]} will have the GPU capped to 6GiB, and offload the remaining layers to CPU
# example: {"include":["model"], "device": ["cuda:0", "cuda:1"], "limits": [ 0.5, 0.5 ]} will have the GPU 1 try and use 50% of the model, and GPU 2 try and use the other 50%
# | {"assign": [[ f'layers.{i}.' for i in range(0,6) ], [ f'layers.{i}.' for i in range(6,12) ]]} will assign layers 0-5 to device 1, and 6-12 to device 2
tensorrt: bool = False
unsloth: bool = False # unsloth gradient checkpointing (it just offloads tensors to the CPU during backwards, I don't think it's significant enough to bother with on small models)
2023-08-02 21:53:35 +00:00
@dataclass()
class Config(BaseConfig):
device: str = "cuda" # target device
mode: str = "training" # "inferencing"
experimental: bool = False # debug flag
2024-11-10 18:19:48 +00:00
silent_errors: bool = False # if False, raise exceptions on errors that could silently lead to problems, if True ignore them
2023-08-02 21:53:35 +00:00
dataset: Dataset = field(default_factory=lambda: Dataset)
models: dict | list | None = field(default_factory=lambda: [])
loras: dict | list | None = field(default_factory=lambda: [])
2023-08-02 21:53:35 +00:00
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
trainer: Trainer = field(default_factory=lambda: Trainer)
2023-08-02 23:36:26 +00:00
inference: Inference = field(default_factory=lambda: Inference)
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
tokenizer: str | None = None # tokenizer class
tokenizer_path: str = "./tokenizer.json" # tokenizer path
2023-08-02 21:53:35 +00:00
sample_rate: int = 24_000 # sample rate the model expects
audio_backend: str = "vocos" # audio backend to use "encodec" | "vocos" | "dac""
2024-11-19 18:24:33 +00:00
weights_name: str = "fp32"
weights_format: str = "sft" # "pth" | "sft"
supported_weights_formats: list[str] = field(default_factory=lambda: ["sft", "safetensors", "pt", "pth"])
def set_audio_backend(self, audio_backend):
cfg.audio_backend = audio_backend
audio_extension = None
if audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
audio_extension = ".dec"
sample_rate = 48_000
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {audio_backend}")
@property
def audio_backend_extension(self):
audio_extension = None
if self.audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
elif self.audio_backend == "dac":
audio_extension = ".dac"
elif self.audio_backend == "audiodec":
audio_extension = ".dec"
return audio_extension
@property
def model(self):
for i, model in enumerate(self.models):
if model.training:
return model
return self.models[0] if len(self.models) > 0 else None
# should be renamed to adapters
@property
def lora(self):
for i, lora in enumerate(self.loras):
if lora.training:
return lora
return self.loras[0] if len(self.loras) > 0 else None
2023-08-14 03:56:28 +00:00
@property
def distributed(self):
return world_size() > 1
2023-08-02 21:53:35 +00:00
@cached_property
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@cached_property
def get_spkr_group(self):
return eval(self.dataset.speaker_group_getter)
"""
2023-08-02 21:53:35 +00:00
@cached_property
def diskcache(self):
if self.yaml_path is not None and self.dataset.cache:
2023-08-02 21:53:35 +00:00
return diskcache.Cache(self.cache_dir).memoize
return lambda: lambda x: x
"""
2023-08-02 21:53:35 +00:00
# this gets called from vall_e.inference
2023-08-02 21:53:35 +00:00
def load_yaml( self, config_path ):
tmp = Config.from_yaml( config_path )
self.__dict__.update(tmp.__dict__)
def load_model( self, config_path, lora_path=None ):
tmp = Config.from_model( config_path, lora_path )
self.__dict__.update(tmp.__dict__)
2023-08-02 21:53:35 +00:00
def load_hdf5( self, write=False ):
if hasattr(self, 'hdf5'):
self.hdf5.close()
if self.distributed:
self.dataset.hdf5_flag = "r"
try:
self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
except Exception as e:
_logger.warning(f"Error while opening HDF5 file: {self.rel_path}/{self.dataset.hdf5_name}: {str(e)}")
self.dataset.use_hdf5 = False
# a very icky way to handle wildcard expansions
def expand( self, path ):
if not isinstance( path, Path ):
path = Path(path)
# do not glob
if "*" not in str(path):
return [ path ]
metadata_parent = cfg.metadata_dir / path.parent
data_parent = cfg.data_dir / path.parent
if metadata_parent.exists():
return [ path.parent / child.stem for child in Path(metadata_parent).glob(path.name) ]
if data_parent.exists():
return [ path.parent / child.name for child in Path(data_parent).glob(path.name) ]
2024-11-10 18:19:48 +00:00
# return an empty list
if self.silent_errors:
return []
# raise an error to avoid headaches
raise Exception(f'Cannot unglob requested path: {path}')
def format( self, training=True ):
2024-05-12 19:01:52 +00:00
if isinstance(self.dataset, type):
self.dataset = dict()
if isinstance(self.models, type):
self.models = dict()
if isinstance(self.loras, type):
self.loras = dict()
2024-05-12 19:01:52 +00:00
if isinstance(self.hyperparameters, type):
self.hyperparameters = dict()
if isinstance(self.evaluation, type):
self.evaluation = dict()
if isinstance(self.trainer, type):
self.trainer = dict()
if isinstance(self.inference, type):
self.inference = dict()
if isinstance(self.optimizations, type):
self.optimizations = dict()
if isinstance( self.dataset, dict ):
self.dataset = Dataset(**self.dataset)
if isinstance( self.hyperparameters, dict ):
self.hyperparameters = Hyperparameters(**self.hyperparameters)
if isinstance( self.evaluation, dict ):
self.evaluation = Evaluation(**self.evaluation)
if isinstance( self.trainer, dict ):
self.trainer = Trainer(**self.trainer)
if isinstance( self.trainer.deepspeed, dict ):
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
if isinstance( self.inference, dict ):
self.inference = Inference(**self.inference)
if isinstance( self.optimizations, dict ):
self.optimizations = Optimizations(**self.optimizations)
# convert to expanded paths
self.dataset.training = [ self.expand(dir) for dir in self.dataset.training ]
self.dataset.validation = [ self.expand(dir) for dir in self.dataset.validation ]
self.dataset.noise = [ self.expand(dir) for dir in self.dataset.noise ]
# flatten
self.dataset.training = list(itertools.chain.from_iterable(self.dataset.training))
self.dataset.validation = list(itertools.chain.from_iterable(self.dataset.validation))
self.dataset.noise = list(itertools.chain.from_iterable(self.dataset.noise))
# do cleanup
for model in self.models:
if not isinstance( model, dict ):
continue
2024-11-11 18:40:41 +00:00
# to-do: prune unused keys in here too automatically
if "experimental" not in model or not model["experimental"]:
model["experimental"] = {}
if "prom_levels" in model:
_logger.warning(f"Deprecated flag found: {'cfg.model.prom_levels'}")
del model["prom_levels"]
if "interleave" in model:
_logger.warning(f"Deprecated flag found: {'cfg.model.interleave'}")
del model["interleave"]
if "p_rvq_levels" in model["experimental"]:
model["experimental"]["rvq_levels_p"] = model["experimental"]["p_rvq_levels"]
del model["experimental"]["p_rvq_levels"]
2024-11-11 18:40:41 +00:00
if "p_len_train" in model["experimental"]:
del model["experimental"]["p_len_train"]
if "masking_ratio_fixed" in model["experimental"]:
del model["experimental"]["masking_ratio_fixed"]
self.models = [ Model(**model) if isinstance(model, dict) else model for model in self.models ]
self.loras = [ LoRA(**lora) if isinstance(lora, dict) else lora for lora in self.loras ]
if not self.models:
self.models = [ Model() ]
for model in self.models:
if isinstance( model.experimental, dict ):
model.experimental = ModelExperimentalSettings(**model.experimental)
2023-08-16 02:58:16 +00:00
if model.teacher:
model.training = False
if model.training:
model.teacher = False
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
self.hyperparameters.scheduler_type = ""
# do not combine the two
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
self.hyperparameters.scheduler = ""
if self.hyperparameters.scheduler == "":
self.hyperparameters.torch_scheduler = True
2024-05-11 21:31:05 +00:00
if self.trainer.backend == "local" and self.distributed:
self.trainer.ddp = True
2024-06-04 02:28:49 +00:00
if self.trainer.activation_checkpointing is not None:
self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing
if not training:
self.dataset.use_hdf5 = False
# load our HDF5 file if requested here
if self.dataset.use_hdf5:
self.load_hdf5()
# load tokenizer
if self.tokenizer == "naive":
self.tokenizer = NaiveTokenizer()
else:
2024-11-10 18:19:48 +00:00
from transformers import PreTrainedTokenizerFast
tokenizer_path = self.rel_path / self.tokenizer_path
# deduce path if a local copy is not provided
if not tokenizer_path.exists():
tokenizer_path = Path("./data/") / self.tokenizer_path
if not self.silent_errors and not tokenizer_path.exists():
raise Exception(f'Tokenizer path not found: {tokenizer_path}')
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path))
# Preserves the old behavior
class NaiveTokenizer:
def get_vocab( self ):
"""
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
"""
return {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '': 179, '': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, '': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, '': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, '': 220, 'eˈ': 221, 'ʍ': 222, '': 223, '': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
@cached_property
def _bos_token( self ):
return self.get_vocab()["<s>"]
@cached_property
def _eos_token( self ):
return self.get_vocab()["</s>"]
def encode( self, s ):
symmap = self.get_vocab()
phones = " ".join( list(s) )
# do merge
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
phones = phones.replace( f' {merge}', merge )
phones = phones.split(" ")
# cleanup
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
# add bos / eos
phones = ["<s>"] + [ " " if not p else p for p in phones ] + ["</s>"]
# tokenize
return [*map(symmap.get, phones)]
def decode( self, t ):
s = ""
symmap = self.get_vocab()
reverse_symmap = {}
for k, v in symmap.items():
reverse_symmap[v] = k
for i, token in enumerate( t ):
s += reverse_symmap[token]
return s
_logger = logging.getLogger(__name__)
2023-08-02 21:53:35 +00:00
cfg = Config.from_cli()
# some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types
try:
2023-08-16 02:58:16 +00:00
cfg.format()
except Exception as e:
2024-11-10 18:19:48 +00:00
if not cfg.silent_errors:
raise e # throw an error because I'm tired of silent errors messing things up for me
_logger.error(f"Error while parsing config YAML: {str(e)}")
2023-08-04 01:26:36 +00:00
2023-08-02 21:53:35 +00:00
if __name__ == "__main__":
print(cfg)