Commit Graph

227 Commits

Author SHA1 Message Date
mrq
dced595391 more cleanup 2024-06-30 11:00:12 -05:00
mrq
bc2a6fa756 sanity cleanup: moved experimental features under its own thing 2024-06-30 10:37:33 -05:00
mrq
b21f74a5c5 added summing of external embeddings (at this point i dont think any amount of cope bandaids will get DAC to train nicely, I think the RVQ levels the NAR tends add too much noise if they're not accurate) 2024-06-29 23:42:30 -05:00
mrq
793ccb16fb ugh 2024-06-29 22:14:35 -05:00
mrq
2808f881c8 cleaned up subjugated audio embedding into a flag, flag can also have it include the original, underlying embedding as well (it seems to do better when set to inclusive) 2024-06-29 21:46:35 -05:00
mrq
ec5eaebcbc experimental method of using DACs quantizer ""embeddings"" to see if it helps with model quality 2024-06-29 19:46:11 -05:00
mrq
2bfe786ebd ban stop token for NAR levels (because sometimes it gets sampled and causes problems) 2024-06-17 22:14:43 -05:00
mrq
d343bde09b residual_in_fp32=False for mamba arch backends because it breaks the classifier (output projection / lm head / what-have-you) under AMP 2024-06-15 12:08:03 -05:00
mrq
ccb14c06ef mamba2-hf using vasqu/mamba2-torch because it lets me use mamba2 without triton ops (training with my 4xV100s are not happy with mamba2 because of triton) 2024-06-14 19:42:17 -05:00
mrq
83eab4fa59 actually going for the suggested "2x layers, no intermediate scaling" is wrong for VALL-E, directly copying the normal transformer structure fixes mamba2 performance in the test trainer 2024-06-13 20:08:22 -05:00
mrq
26da24fd8d mamba updated to fix that pesky NaN error during training 2024-06-13 12:38:33 -05:00
mrq
cca542a4c0 ugh 2024-06-11 23:59:28 -05:00
mrq
65a8960305 option to split classifier per-level instead of sharing one (at this point I'm just scrambling to try and cope with training a DAC model, the NAR is being a pain) 2024-06-11 22:28:59 -05:00
mrq
a7a6e0ac76 validated that inferencing works, changed some defaults (NAR benefits from greedy sampling) 2024-06-09 17:11:38 -05:00
mrq
80f9530840 ugh 2024-06-09 01:43:44 -05:00
mrq
5c732b72ee ugh 2024-06-08 20:34:00 -05:00
mrq
8d068fa3f9 reticulating splines 2024-06-08 20:30:15 -05:00
mrq
b072f9b96b fixes 2024-06-08 16:01:34 -05:00
mrq
58fb0a84db added experimental NAR only model (inferences text length, need more experimenting), AudioEmbedding logic cleanup (I still think it's being done wrong) 2024-06-08 15:42:02 -05:00
mrq
7d6fff24f9 un-tensor'd quant_level marker since it doesn't need to be one (I forgot why I had it as one but nothing seems to need it as a tensor that didn't already make it one) 2024-06-07 20:46:22 -05:00
mrq
b0158a61d5 fixed some logic errors with training (grabbing wrong quant level...) 2024-06-07 20:34:36 -05:00
mrq
eafa622be2 I forgot the actual reason I was cleaning things up was to re-include prom loss calculation (I realized the reason I did this was because of an prom embedding oversight, it seems to work now) 2024-06-07 20:29:25 -05:00
mrq
a5c90348d9 head hurt 2024-06-06 20:51:31 -05:00
mrq
516b0894d7 m 2024-06-06 19:41:26 -05:00
mrq
ee25d2e62e removed the need to supply targ_list + different AudioEmbedding + other things 2024-06-06 18:52:41 -05:00
mrq
b2194b859a re-added loading multiple models because I'm now entertaining having split AR/NAR models again (and need a way to load both at once) 2024-06-06 09:48:43 -05:00
mrq
b05a905b95 ugh 2024-06-05 21:02:05 -05:00
mrq
4073656293 oops 2024-06-05 20:53:10 -05:00
mrq
ff6fe6f1bc cleanup 2024-06-05 20:30:43 -05:00
mrq
880b4ecd1b cleanup, putting some thoughts in comments before I forget about them 2024-06-05 19:50:06 -05:00
mrq
3cfc8a96bb oops 2024-06-05 10:30:04 -05:00
mrq
48cd1054f9 madness 2024-06-04 23:48:51 -05:00
mrq
9e3f2e300f experimental "just have a token for what rvq level we're on" that seems to help all models (mamba almost works, but it might just have to be relegated as a pure AR model) 2024-06-04 23:23:31 -05:00
mrq
e0886c5a78 re-added mamba as a possible non-experimental arch backend (test trainer will set it as AR only, doing any NAR tasks lobotomizes it) 2024-06-04 22:41:22 -05:00
mrq
934672252b feverish cleanup 2024-06-03 21:28:49 -05:00
mrq
7feeb944a0 probably insane with even entertaining going this route 2024-06-03 20:26:27 -05:00
mrq
b482ca19ff added model config option to set KV head count for MQA/GQA instead of MHA for llama-based models (i think its very negligible both ways on such a small model size) 2024-05-31 19:32:37 -05:00
mrq
e15c6c74c3 correctness 2024-05-30 20:50:45 -05:00
mrq
da473295b7 better way to compute per-segment losses 2024-05-28 19:29:54 -05:00
mrq
6c49ad06a3 forgot to reinclude mult by loss factors 2024-05-27 20:40:21 -05:00
mrq
b82f0d5c0c finally nailed the issue that caused logging to break on one machine but not another (bitnet includes zetascale which is a parasite that will break logging) 2024-05-27 19:47:58 -05:00
mrq
c0ac84c795 uh 2024-05-27 19:05:56 -05:00
mrq
197d517181 ugh 2024-05-27 17:09:35 -05:00
mrq
5af6f41c94 added loss calcs against prom (requires the right settings for not shit results, disabled by default) 2024-05-27 08:43:00 -05:00
mrq
458b95d196 added option to split between text loss and audio loss (to-do: document this better), because it may or may not be a problem with LLaMA-backed models because my loss hovers around 3.9 / 56% accuracy despite sounding decent at the moment 2024-05-19 11:23:56 -05:00
mrq
917eeb40d2 ughhh 2024-05-12 08:22:39 -05:00
mrq
9910c75d5a checkpointing for bitnet impl 2024-05-12 07:52:54 -05:00
mrq
14709ac67f ughh 2024-05-12 07:30:59 -05:00
mrq
a755eb3c62 ugh 2024-05-11 17:34:45 -05:00
mrq
88e9b9caff local ddp fix 2024-05-11 17:29:01 -05:00
mrq
3337c69e5a leverage between xformers and torch.backends.cuda.sdp_kernel for attention 2024-05-11 17:14:05 -05:00
mrq
d33c7bb7cf ugh 2024-05-11 16:47:19 -05:00
mrq
2109712e5b resolve deprecation warning that doesn't show on my old training rig but does on my new one 2024-05-09 23:25:44 -05:00
mrq
1547de5020 haha... 2024-05-09 23:15:52 -05:00
mrq
0d5d545a40 crammed in DAdaptation (doesn't seem worth it) and ScheduleFree (forgot I wanted to weeks ago, seems promising), optimization wrapper cleanup, test trainer changes, etc. 2024-05-09 20:28:20 -05:00
mrq
33b7f81b94 small cleanups 2024-05-04 22:37:22 -05:00
mrq
253441b750 forgot to disable verbose flag 2024-05-04 13:13:52 -05:00
mrq
3dca1125f5 implemented xformers in HF's Llama (because theres no flash attention for Volta cards) 2024-05-04 13:07:45 -05:00
mrq
ffa200eec7 added option to specify frames per second for the given audio representation (Encodec is 75Hz, DAC is 41Hz (at 24K sources)) 2024-05-04 12:05:41 -05:00
mrq
b5d1456a09 backwards compat for my shitty old weights (was testing if disabling AudioEmbedding summing magically made things better (it did not)) 2024-04-29 22:14:01 -05:00
mrq
5120ffdda7 god it would be nice to know the best way to handle audio embeddings, because I genuinely don't know without skimming through papers or devoting X amount of GPU hours in training 2024-04-29 18:24:05 -05:00
mrq
b0bd88833c refractor cleanup, had a revelation on how I can handle a batch of varying tasks 2024-04-16 21:04:48 -05:00
mrq
467fa1c5ee wrapper fixes 2024-04-16 10:19:02 -05:00
mrq
aa1e25fbf5 backwards compat for old YAMLs with models, option to set flash attention 2 for Llama (and derivatives), included syncdoth/RetNets torchscale retnet for shits and grins, etc. 2024-04-16 10:02:31 -05:00
mrq
545162195b deprecate sole AR/NAR model by only keeping the AR+NAR (the beauty of no one using this is that I can break compat as much as I want), add tone token for when I classify my dataset with tone/emotion in the future, some other things 2024-04-15 19:54:32 -05:00
mrq
d69a00e389 Properly pass retention_mask for retnet-HF, attempt to fix recurrent forward for retnet (doesn't work still) 2024-04-14 13:12:50 -05:00
mrq
9d97eb5104 added FP8 support through NVIDIA/TransformerEngine, added RetNet_HF through syncdoth/RetNet (as an alternative to branch away from torchscale) 2024-04-08 20:14:51 -05:00
mrq
7075c2a5f0 added an option to allow injecting embeddings from another model, because it dawned upon me how valuable embeddings from a good model can be for subsequent trainings (defined under cfg.models._embeddings as a relative path to the yaml) 2024-04-04 19:11:49 -05:00
mrq
35d78a2bb0 Yet Another Underlying Transformer Implementation (BitNet, will give it a few days to see how it fares) 2024-02-29 20:29:17 -06:00
mrq
3da1518ace added Mistral (non-Mixtral) backend, useless optimization when not training, proper adjustment of the LR for Prodigyopt through d_coeff (maybe), recurrent sampling for LLaMA/Mistral/Mixtral backends (again, doesn't actually work) 2024-01-31 21:48:36 -06:00
mrq
cce929e136 nasty hotfix for transformer's Mixtral throwing an error when batch sizes > 1 2024-01-26 19:41:12 -06:00
mrq
e799665759 experimental weighting of prom/resp embeds 2024-01-25 12:18:48 -06:00
mrq
c690aa509d fixes and compat (MoE-fying an existing model and retraining from there just ruins it after a second of audio...) 2023-12-25 21:20:32 -06:00
mrq
0db3203b21 added LLaMA/Mixtral (if experts>1) model arches, utilize XMoE's loss as well, set MoE frequency to 1 to make every layer MoE'd for RetNet, etc. (going to do tests without burning out again to see how things go) 2023-12-22 19:27:36 -06:00
mrq
9c198eb75a added torchscale XMOE integration (because Mixtral 8x7B seems very promising and I want to see if it works) 2023-12-20 18:45:58 -06:00
mrq
9a6040383e make validation samplers ignore sampler type 2023-10-22 09:01:47 -05:00
mrq
a539f6889f mucked around with the loss calculation, this seems better? 2023-10-13 18:22:21 -05:00
mrq
65f500083d tweaks to try and get deepspeed quantized inferencing, validating bitsandbytes and deepspeed quantization, nothing seems to work 2023-10-12 22:21:43 -05:00
mrq
08bae355eb actually use langs from the dataloader 2023-10-11 21:21:50 -05:00
mrq
3af19d79fd oops 2023-10-11 20:49:54 -05:00
mrq
8740cdefc6 added initial support for languages (still testing, marked as model version 3), added experimental 'context extend by limiting the resp context' (untested) 2023-10-11 20:38:40 -05:00
mrq
7facacf7c9 separated samplers into its own file, don't bother copying the logits back to the GPU after sampling, it's not necessary 2023-10-11 12:25:31 -05:00
mrq
47b3077415 fixed mirostat issue 2023-10-10 18:09:49 -05:00
mrq
99e980d323 documentation and more better-er attribution 2023-10-10 17:15:16 -05:00
mrq
e727b6e5c1 changed dynamic temperature trigger to be a min-(n)ar-temp value between [0,(n)ar-temp), flags to set min temp, checkbox in web UI to request it 2023-10-10 17:02:33 -05:00
mrq
ec25f56bd9 used torch.max fixes things, somehow, for dynamic temp sampling 2023-10-10 16:42:24 -05:00
mrq
26fbb92ec6 reduced dynamic temperature threshold to > 1.0, as it seems to not quite be useful for audio LMs, sped up any sampling that touches logits by copying them to CPU first, as accessing tensors on the GPU is slow as balls) 2023-10-09 14:46:17 -05:00
mrq
27483e56f0 disabled preparing of SpeechX tasks, added dynamic temperature testing (to-do: test it, credited in the function) 2023-10-09 13:01:40 -05:00
mrq
2deb995cc9 updated setup script 2023-10-06 20:08:28 -05:00
mrq
63cc9cf37a added compat flags for torchscale because the maintainer for torchscale broke compat for existing models 2023-10-05 16:39:46 -05:00
mrq
c0b25541e3 restructured some things with the model to remove dead weights 2023-09-20 19:10:59 -05:00
mrq
a6bfe43590 added mirostat sampling (given a partially trained model, it got far decent output than I expected, need to test on a better trained model) 2023-09-18 18:55:41 -05:00
mrq
2567e082b5 UGH 2023-09-16 00:26:13 -05:00
mrq
22ffaf3a33 have loss for the NAR not-ignore the text prompt, I imagine this should help the NAR and explain why it's always had a bit of an issue with training 2023-09-15 19:08:44 -05:00
mrq
4aef798135 added picking final candidate based on sum of score instead of first candidate (this changes nothing). 2023-09-13 13:19:11 -05:00
mrq
23a5fdd645 implemented a naive beam search (I really should be taking a break) 2023-09-12 21:28:07 -05:00
mrq
a6ae344e5b some comments 2023-09-12 16:04:45 -05:00
mrq
d07c63b9d8 unified more things with training the AR+NAR monolothic model 2023-09-12 15:54:41 -05:00
mrq
40ef34e1ca this embedding class definitely works, and migrating from the previous embedding weights seems to work. 2023-09-11 14:13:42 -05:00
mrq
a1f250ffac set default max_levels for NAR to 0 and implicitly set it to max resps levels because the previous way was implicitly assuming all models were outputting at 1+7 RVQ bins. 2023-09-10 20:33:33 -05:00
mrq
10c34c5b98 added a length-based decay factor for repetition penalty 2023-09-08 21:02:00 -05:00
mrq
b922f35b6b added documentation on how these new sampling parameters are very iffy and you really need to know what you are doing to use them because this is audio generation and not text generation 2023-09-08 20:43:36 -05:00
mrq
14c78bae39 added lots of sampling options (top-k/top-p, repetition penalty, length penalty) 2023-09-08 20:30:54 -05:00
mrq
f69aad9c65 some day I'll get it right 2023-09-08 15:36:26 -05:00
mrq
b2907ae7e0 seems that my PromEmbedding/RespEmbedding doesn't actually work all that well, naively using dedicated MultiEmbeddings for AR/NAR in the monolithic model is the best way to go 2023-09-08 01:03:24 -05:00
mrq
c47fc3274e added backwards compat flag 2023-09-07 17:12:17 -05:00
mrq
ab5134f385 tweaks and fixes 2023-09-07 17:08:38 -05:00
mrq
b2c2dec291 added homebrewed per-RVQ-bin embedding solutions 2023-09-07 16:48:02 -05:00
mrq
e7a67410d1 oops 2023-09-07 09:14:03 -05:00
mrq
7ce06432fd fixed the AR+NAR dual model, the resp_emb has to be split up (classifier might too) 2023-09-06 19:33:39 -05:00
mrq
100ca6b7d0 added option to use SGD optimizer through the YAML, added option to pass in additional optimizer parameters through the YAML, added experimental unified AR+NAR model (does not seem fruitful in testing) 2023-09-06 18:58:35 -05:00
mrq
451726fdd5 added ability to disable activation checkpointing through the YAML (it is very VRAM intensive at double layer size) 2023-09-05 15:38:21 -05:00
mrq
2f9cd0842f merged dedicated interleaved AR code with the normal AR code 2023-09-03 22:46:08 -05:00
mrq
2f06166ddd cleanups 2023-09-01 21:33:51 -05:00
mrq
e40c0d34a0 somewhat got recurrent forward working (it's as accurate as chunkwise forward: it's not accurate at all), added option to use AMP instead of blanket setting the weight's dtype 2023-09-01 20:58:29 -05:00
mrq
2bc2d08b09 (need to verify) added modifying model size and config bool to align with VALL-E continuous' methodology 2023-09-01 17:19:34 -05:00
mrq
165a1154e0 Undo naive=False test flag, this shouldn't have made its way in 2023-08-26 22:00:43 -05:00
mrq
78378ed1ce overhauled dataloading code to be marginally faster, mostly cleaned up, and can leverage a metadata json to help things out 2023-08-26 19:53:23 -05:00
mrq
16e0020901 disabled chunkwise_recurrent for 2x speed gains (I suppose it has been working the entire time, but I have not been properly grabbing things, and this might explain why the output is bad) 2023-08-25 19:50:19 -05:00
mrq
2d1a9f10c0 nightmare of spaghetti that might break compat; mechanism to increase RVQ bins of an existing model without retraining, keeps sampled proms/resps at max RVQ level and trim off excess levels according to what model receives them, some other things I already forgot (I really hope no one else has weights being baked right now) 2023-08-19 15:06:33 -05:00
mrq
2a71486cb6 preparing for SpeechX extensions 2023-08-18 20:58:07 -05:00
mrq
d7deaf6def distributed training works now (hopefully) 2023-08-13 22:07:45 -05:00
mrq
2af09d0bef fixed that mysterious discepancy between the reported losses (I am so freaking mad, my piss is boiling, I had to interrupt halfway through an epoch) 2023-08-05 15:25:41 -05:00
mrq
608c1970eb ops 2023-08-03 20:36:19 -05:00
mrq
c85101403f big cleanup 2023-08-03 20:26:36 -05:00
mrq
f6597e2dfe adjustments 2023-08-02 18:36:26 -05:00
mrq
7a06b27a9c Tweaks 2023-08-02 22:06:39 +00:00