Basically just cleaning up the code, removing some bad conventions,
and reducing complexity somewhat so that I can play around with
this arch a bit more easily.
SPSR_model really isn't that different from SRGAN_model. Rather than continuing to re-implement
everything I've done in SRGAN_model, port the new stuff from SPSR over.
This really demonstrates the need to refactor SRGAN_model a bit to make it cleaner. It is quite the
beast these days..
This is done by pre-training a feature net that predicts the features
of HR images from LR images. Then use the original feature network
and this new one in tandem to work only on LR/Gen images.
The logic is that the discriminator may be incapable of providing a truly
targeted loss for all image regions since it has to be too generic
(basically the same argument for the switched generator). So add some
switches in! See how it works!
The latest discriminator architecture was already pretty much a unet. This
one makes that official and uses shared layers. It also upsamples one additional
time and throws out the lowest upsampling result.
The intent is to delete the old vgg pixdisc, but I'll keep it around for a bit since
I'm still trying out a few models with it.
Also makes all processing blocks have a conformant signature.
Alters ExpansionBlock to perform a processing conv on the passthrough
before the conjoin operation - this will break backwards compatibilty with SRG2.
Big update to SRG2 architecture to pull in a lot of things that have been learned:
- Use group norm instead of batch norm
- Initialize the weights on the transformations low like is done in RRDB rather than using the scalar. Models live or die by their early stages, and this ones early stage is pretty weak
- Transform multiplexer to use u-net like architecture.
- Just use one set of configuration variables instead of a list - flat networks performed fine in this regard.
- Removed a bunch of unnecessary image loggers. These were just consuming space and never being viewed
- Got rid of support of artificial var_ref support. The new pixdisc is what i wanted to implement then - it's much better.
- Add pixgan GAN mechanism. This is purpose-built for the pixdisc. It is intended to promote a healthy discriminator
- Megabatchfactor was applied twice on metrics, fixed that
Adds pix_gan (untested) which swaps a portion of the fake and real image with each other, then expects the discriminator
to properly discriminate the swapped regions.
Relu produced good performance gains over LeakyRelu, but
GAN performance degraded significantly. Try SiLU as an alternative
to see if it's the leaky-ness we are looking for or the smooth activation
curvature.
Something strange is going on. These networks do not respond to
discriminator gradients properly anymore. SRG1 did, however so
reverting back to last known good state to figure out why.
- Get rid of forwards(), it makes numeric_stability.py not work properly.
- Do stability auditing across layers.
- Upsample last instead of first, work in much higher dimensionality for transforms.
Move to a fully fixup residual network for the switch (no
batch norms). Fix a bunch of other small bugs. Add in a
temporary latent feed-forward from the bottom of the
switch. Fix several initialization issues.
- Just use resnet blocks for the multiplexer trunk of the generator
- Every block initializes itself, rather than everything at the end
- Cleans up some messy parts of the architecture, including unnecessary
kernel sizes and places where BN is not used properly.
An evolution of SwitchedResidualGenerator, this variant nests attention
modules upon themselves to extend the representative capacity of the
model significantly.
Got rid of the converged multiplexer bases but kept the configurable architecture. The
new multiplexers look a lot like the old one.
Took some queues from the transformer architecture: translate image to a higher filter-space
and stay there for the duration of the models computation. Also perform convs after each
switch to allow the model to anneal issues that arise.
Found out that batch norm is causing the switches to init really poorly -
not using a significant number of transforms. Might be a great time to
re-consider using the attention norm, but for now just re-enable it.
- Add filters_mid spec which allows a expansion->squeeze for the transformation layers.
- Add scale and bias AFTER the switch
- Remove identity transform (models were converging on this)
- Move attention image generation and temperature setting into new function which gets called every step with a save path
The concept here is to use switching to split the generator into two functions:
interpretation and transformation. Transformation is done at the pixel level by
relatively simple conv layers, while interpretation is computed at various levels
by far more complicated conv stacks. The two are merged using the switching
mechanism.
This architecture is far less computationally intensive that RRDB.
- Add LowDimRRDB; essentially a "normal RRDB" but the RDB blocks process at a low dimension using PixelShuffle
- Add switching wrappers around it
- Add support for switching on top of multi-headed inputs and outputs
- Moves PixelUnshuffle to arch_util
Renames AttentiveRRDB to SwitchedRRDB. Moves SwitchedConv to
an external repo (neonbjb/switchedconv). Switchs RDB blocks instead
of conv blocks. Works good!