vall-e/vall_e/data.py

1641 lines
52 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
# todo: clean this mess up
import copy
import h5py
import json
import logging
import numpy as np
import os
import random
import torch
import itertools
2023-08-02 21:53:35 +00:00
from .config import cfg
from .emb.qnt import trim, trim_random, repeat_extend_audio, concat_audio, merge_audio, decode_to_file, decode as decode_qnt, encode as encode_qnt, pad_codes_with_silence
from .utils.sampler import PoolSampler, OrderedSampler, BatchedOrderedSampler, RandomSampler
from .utils.distributed import global_rank, local_rank, world_size
from .utils.io import torch_save, torch_load
2023-08-02 21:53:35 +00:00
from collections import defaultdict
from functools import cache, cached_property
from itertools import groupby, zip_longest
from pathlib import Path
from typing import Any
from torch import Tensor
from torch.utils.data import DataLoader, Dataset as _Dataset
from torch.utils.data.distributed import DistributedSampler
2024-06-04 02:28:49 +00:00
from torch.nn.utils.rnn import pad_sequence
2023-08-02 21:53:35 +00:00
from tqdm.auto import tqdm
# torch.multiprocessing.set_sharing_strategy("file_system")
_logger = logging.getLogger(__name__)
2024-06-04 02:28:49 +00:00
# fold into a typical LLM sequence (one embedding rather than split embeddings)
def fold_inputs(
text_list = [],
lang_list = [],
task_list = [],
tone_list = [],
2024-06-04 02:28:49 +00:00
prom_list = [],
resp_list = [],
targ_list = [],
2024-06-04 02:28:49 +00:00
ignore_index = None,
sep = 3,
stop = 3,
config = None,
2024-06-04 02:28:49 +00:00
quant_levels = None,
2024-06-04 02:28:49 +00:00
):
if config is None:
config = cfg.model
2024-06-04 02:28:49 +00:00
def _create_mask(l, device):
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
return (seq < stop).float() # (b t)
2024-08-10 02:15:01 +00:00
def list_to_tensor(x_list: list[Tensor], mask=True):
2024-06-04 02:28:49 +00:00
l = list(map(len, x_list))
x = pad_sequence(x_list).t()
2024-08-10 02:15:01 +00:00
if not mask:
return x
2024-06-04 02:28:49 +00:00
m = _create_mask(l, x_list[0].device)
m = m.to(x)
return x, m
def process_prom_or_task(i, prom):
if prom is None:
2024-08-10 02:15:01 +00:00
return 0
if isinstance(prom, str):
task = get_task_symmap()[f'<{input}>']
seq = torch.tensor([task_start + task], device=device, dtype=dtype)
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
return seq.shape[0] + 1
# deinterleaved
if quant_levels is not None:
quant_level = quant_levels[i]
if ignore_index is not None:
seq = torch.tensor( [ ignore_index for _ in range( prom.shape[0] ) ], device=device, dtype=dtype)
else:
seq = prom[:, quant_level].to(device=device, dtype=dtype).clone()
for idx, token in enumerate( seq ):
token += prom_start + ( config.audio_tokens * quant_level )
# interleaved
else:
if ignore_index is not None:
seq = torch.tensor( [ ignore_index for _ in range( prom.shape[0] * prom.shape[1] ) ], device=device, dtype=dtype)
else:
seq = prom.flatten().to(device=device, dtype=dtype)
for idx, token in enumerate( seq ):
token += prom_start + ( config.audio_tokens * ( idx % config.resp_levels ) )
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
return seq.shape[0] + 1
def generate_position_ids( length, sep=True ):
return [ i for i in range( length + (1 if sep else 0) ) ]
"""
if quant_levels is not None:
resps_list = [ [] if l == 0 else resp for l, resp in zip(quant_levels, resp_list) ]
"""
2024-06-04 02:28:49 +00:00
device = text_list[0].device
dtype = torch.int64
2024-06-04 02:28:49 +00:00
batch_size = len(text_list)
input_ids = [ [] for _ in range(batch_size) ]
2024-08-10 02:15:01 +00:00
position_ids = [ [] for _ in range(batch_size) ]
2024-06-04 02:28:49 +00:00
offset = 0
sep = torch.tensor([ sep ], device=device, dtype=dtype)
stop = torch.tensor([ stop ], device=device, dtype=dtype)
text_start = 0
text_end = text_start + config.text_tokens
2024-06-04 02:28:49 +00:00
lang_start = text_end
lang_end = lang_start + config.langs
rvq_start = lang_end
rvq_end = rvq_start + config.resp_levels
prom_start = rvq_end
prom_end = prom_start + config.audio_tokens * config.resp_levels
task_start = prom_end
task_end = task_start + config.tasks
tone_start = task_end
tone_end = tone_start + config.tones
resp_start = tone_end
resp_end = resp_start + config.audio_tokens * config.resp_levels
# text tokens
2024-06-04 02:28:49 +00:00
for i, text in enumerate(text_list):
if isinstance(text, torch.Tensor):
seq = text + text_start
else:
seq = torch.tensor([text_start + text], device=device, dtype=dtype)
2024-08-10 02:15:01 +00:00
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# lang tokens
for i, lang in enumerate(lang_list):
if isinstance(lang, torch.Tensor):
seq = lang + lang_start
else:
seq = torch.tensor([lang_start + lang], device=device, dtype=dtype)
2024-08-10 02:15:01 +00:00
2024-06-04 02:28:49 +00:00
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
2024-06-04 02:28:49 +00:00
2024-06-05 01:41:13 +00:00
# inject target quant_level
if quant_levels is not None:
for i, rvq in enumerate( quant_levels ):
if isinstance(rvq, torch.Tensor):
seq = rvq + rvq_start
else:
seq = torch.tensor([rvq_start + rvq], device=device, dtype=dtype)
2024-06-05 01:41:13 +00:00
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# prom / task tokens
2024-06-04 02:28:49 +00:00
for i, prom in enumerate(prom_list):
# list of proms with a possible task token
2024-08-10 02:15:01 +00:00
length = 0
if isinstance(prom, list):
for p in prom:
2024-08-10 02:15:01 +00:00
length += process_prom_or_task(i, p)
# raw tensor
2024-06-04 02:28:49 +00:00
else:
2024-08-10 02:15:01 +00:00
length += process_prom_or_task(i, prom)
position_ids[i].append( generate_position_ids( length, sep=False ) )
2024-06-04 02:28:49 +00:00
# tone tokens
for i, tone in enumerate(tone_list):
if isinstance(tone, torch.Tensor):
seq = tone + tone_start
else:
seq = torch.tensor([tone_start + tone], device=device, dtype=dtype)
2024-06-04 02:28:49 +00:00
input_ids[i].append( seq )
input_ids[i].append( sep )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# resp tokens
2024-06-04 02:28:49 +00:00
for i, resp in enumerate(resp_list):
# deinterleaved
if quant_levels is not None:
# grab the previous rvq level
quant_level = quant_levels[i] - 1
# way to signal we want to inference for rvq level 0
# without it, it's a random chance for any level to be selected again
if quant_level < 0:
2024-06-05 01:41:13 +00:00
continue
else:
# my shitcode keeps things as lists of tensors for each level, so this handles it because lists can't index by tuples
if isinstance(resp, list):
seq = resp[quant_level].to(device=device, dtype=dtype).clone()
else:
seq = resp[:, quant_level].to(device=device, dtype=dtype).clone()
for idx, token in enumerate( seq ):
token += resp_start + ( config.audio_tokens * quant_level )
input_ids[i].append( seq )
input_ids[i].append( stop )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# interleaved
else:
seq = resp.flatten().to(device=device, dtype=dtype)
for idx, token in enumerate( seq ):
token += resp_start + ( config.audio_tokens * ( idx % config.resp_levels ) )
input_ids[i].append( seq )
input_ids[i].append( stop )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# targ list
for i, resp in enumerate(targ_list):
# deinterleaved
if quant_levels is not None:
quant_level = quant_levels[i]
seq = resp[:, quant_level].to(device=device, dtype=dtype)
for idx, token in enumerate( seq ):
token += resp_start + ( config.audio_tokens * quant_level )
input_ids[i].append( seq )
input_ids[i].append( stop )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
# interleaved
else:
seq = resp.flatten().to(device=device, dtype=dtype)
for idx, token in enumerate( seq ):
token += resp_start + ( config.audio_tokens * ( idx % config.resp_levels ) )
input_ids[i].append( seq )
input_ids[i].append( stop )
2024-08-10 02:15:01 +00:00
position_ids[i].append( generate_position_ids( seq.shape[0] ) )
2024-06-04 02:28:49 +00:00
for i, batch in enumerate(input_ids):
input_ids[i] = torch.concat(input_ids[i], dim=-1).to(device=device, dtype=dtype)
2024-08-10 02:15:01 +00:00
position_ids[i] = torch.concat([ torch.tensor(ids, device=device, dtype=dtype) for ids in position_ids[i] ], dim=-1)
input_ids, attention_mask = list_to_tensor(input_ids)
position_ids = list_to_tensor(position_ids, mask=False)
2024-06-04 02:28:49 +00:00
2024-08-10 02:15:01 +00:00
return input_ids, attention_mask, position_ids
2024-06-04 02:28:49 +00:00
# unfold from one unified token ID space to separate token spaces
# to-do: unfold at a specific RVQ level instead if requested
2024-06-04 02:28:49 +00:00
def unfold_outputs(
output_ids,
sep = 3,
stop = 3,
config = None,
quant_levels = None,
2024-06-04 02:28:49 +00:00
):
def bin_to_rvqs( tokens ):
length = len(tokens)
"""
if length % config.resp_levels == 0:
tokens = torch.tensor(tokens).reshape( config.resp_levels, length // config.resp_levels ).t()
"""
bins = [ [] for _ in range(config.resp_levels) ]
for pos in range( length ):
rvq = pos % config.resp_levels
bins[rvq].append( tokens[pos] )
nearest = ( len(bins) // config.resp_levels ) * config.resp_levels
bins = bins[:nearest]
return torch.tensor(bins, device=device, dtype=dtype).t()
if config is None:
config = cfg.model
2024-06-04 02:28:49 +00:00
device = output_ids.device
dtype = torch.int64
2024-06-04 02:28:49 +00:00
batch_size = output_ids.shape[0]
text_list = [ [] for _ in range(batch_size) ]
rvq_list = [ [] for _ in range(batch_size) ]
lang_list = [ [] for _ in range(batch_size) ]
task_list = [ [] for _ in range(batch_size) ]
tone_list = [ [] for _ in range(batch_size) ]
2024-06-04 02:28:49 +00:00
prom_list = [ [] for _ in range(batch_size) ]
resp_list = [ [] for _ in range(batch_size) ]
text_start = 0
text_end = text_start + config.text_tokens
lang_start = text_end
lang_end = lang_start + config.langs
rvq_start = lang_end
rvq_end = rvq_start + config.resp_levels
prom_start = rvq_end
prom_end = prom_start + config.audio_tokens * config.resp_levels
task_start = prom_end
task_end = task_start + config.tasks
tone_start = task_end
tone_end = tone_start + config.tones
resp_start = tone_end
resp_end = resp_start + config.audio_tokens * config.resp_levels
2024-06-04 02:28:49 +00:00
for i, batch in enumerate( output_ids ):
# cringe logic to handle prefix resp for rvq levels > 0
# a better way is to observe if the rvq level increased
should_flush = False
flushed = False
2024-06-04 02:28:49 +00:00
for idx, token in enumerate( batch ):
id = token.item()
if id == sep or id == stop:
if should_flush and quant_levels is not None and quant_levels[i] > 0:
resp_list[i] = []
should_flush = False
flushed = True
2024-06-04 02:28:49 +00:00
continue
# text tokens
if text_start <= id and id < text_end:
text_list[i].append( (id - text_start) % config.text_tokens )
# lang tokens
elif lang_start <= id and id < lang_end:
lang_list[i].append( (id - lang_start) % config.langs )
# rvq levels
elif rvq_start <= id and id < rvq_end:
rvq_list[i].append( (id - rvq_start) % config.resp_levels )
# prom tokens
elif prom_start <= id and id < prom_end:
prom_list[i].append( (id - prom_start) % config.audio_tokens )
# task tokens
elif task_start <= id and id < task_end:
task_list[i].append( (id - task_start) % config.tasks )
# lang tokens
elif tone_start <= id and id < tone_end:
tone_list[i].append( (id - tone_start) % config.tones )
# resp tokens
elif resp_start <= id and id < resp_end:
resp_list[i].append( (id - resp_start) % config.audio_tokens )
if not flushed:
should_flush = True
2024-06-04 02:28:49 +00:00
if quant_levels is not None:
prom_list[i] = torch.tensor(prom_list[i], device=device, dtype=dtype).t()
resp_list[i] = torch.tensor(resp_list[i], device=device, dtype=dtype).t()
2024-06-04 02:28:49 +00:00
else:
prom_list[i] = bin_to_rvqs( prom_list[i] )
resp_list[i] = bin_to_rvqs( resp_list[i] )
text_list[i] = torch.tensor( text_list[i], device=device, dtype=dtype )
task_list[i] = torch.tensor( task_list[i], device=device, dtype=dtype )
lang_list[i] = torch.tensor( lang_list[i], device=device, dtype=dtype )
tone_list[i] = torch.tensor( tone_list[i], device=device, dtype=dtype )
2024-06-04 02:28:49 +00:00
return dict(
text_list=text_list,
prom_list=prom_list,
resp_list=resp_list,
task_list=task_list,
lang_list=lang_list,
tone_list=tone_list,
2024-06-04 02:28:49 +00:00
)
# to-do: clean up this symmap mess
2023-08-02 21:53:35 +00:00
def get_phone_symmap():
return cfg.tokenizer.get_vocab()
2023-08-02 21:53:35 +00:00
def tokenize( phones ):
if isinstance( phones, list ):
phones = "".join( phones )
return cfg.tokenizer.encode( phones )
def get_lang_symmap():
return {
"en": 0,
"ja": 1,
}
def get_tone_symmap():
return {
"neutral": 0,
}
2023-08-02 21:53:35 +00:00
return symmap
def get_task_symmap():
return {
"<tts>": 0,
"<tts-c>": 1,
"<ns>": 2,
"<sr>": 3,
"<tse>": 4,
"<soe>": 5,
"<mask>": 6,
"<eoe>": 7,
"<stt>": 8,
2024-07-19 04:25:32 +00:00
"<nse>": 6, # fake
"<cse>": 6, # fake
}
2023-08-02 21:53:35 +00:00
def _replace_file_extension(path, suffix):
return (path.parent / path.name.split(".")[0]).with_suffix(suffix)
def _get_quant_extension():
return ".dac" if cfg.audio_backend == "dac" else ".enc"
def _get_phone_extension():
return ".json" # if cfg.audio_backend == "dac" else ".phn.txt"
def _get_quant_path(path):
return _replace_file_extension(path, _get_quant_extension())
def _get_phone_path(path):
return _replace_file_extension(path, _get_phone_extension())
_durations_map = {}
# makeshift caching the above to disk
@cfg.diskcache()
def _get_duration_map( type="training" ):
return _durations_map[type] if type in _durations_map else {}
@cfg.diskcache()
def _load_paths(dataset, type="training"):
2024-04-29 03:28:29 +00:00
return { cfg.get_spkr( cfg.data_dir / data_dir / "dummy" ): _load_paths_from_metadata( data_dir, type=type, validate=cfg.dataset.validate and type == "training" ) for data_dir in tqdm(dataset, desc=f"Parsing dataset: {type}") }
2024-05-16 04:04:19 +00:00
def _load_paths_from_metadata(group_name, type="training", validate=False):
data_dir = group_name if cfg.dataset.use_hdf5 else cfg.data_dir / group_name
_fn = _get_hdf5_paths if cfg.dataset.use_hdf5 else _get_paths_of_extensions
2024-05-16 04:04:19 +00:00
def key( id, entry=None ):
return f"/{type}/{_get_hdf5_path(data_dir)}/{id}" if cfg.dataset.use_hdf5 else data_dir / id
2024-05-12 03:58:38 +00:00
2024-05-16 04:04:19 +00:00
metadata_path = cfg.metadata_dir / f'{group_name}.json'
metadata = {}
2024-04-29 03:28:29 +00:00
if cfg.dataset.use_metadata and metadata_path.exists():
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
if len(metadata) == 0:
return _fn( data_dir, type if cfg.dataset.use_hdf5 else _get_quant_extension(), validate )
2024-05-16 04:04:19 +00:00
def _validate( id, entry ):
2024-05-12 03:58:38 +00:00
phones = entry['phones'] if "phones" in entry else 0
duration = entry['duration'] if "duration" in entry else 0
# add to duration bucket
k = key(id, entry)
if type not in _durations_map:
_durations_map[type] = {}
_durations_map[type][k] = duration
if not validate:
return True
return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration
return [ key(id, entry) for id, entry in metadata.items() if _validate(id, entry) ]
2023-08-02 21:53:35 +00:00
def _get_hdf5_path(path):
2024-04-29 03:28:29 +00:00
# to-do: better validation
return str(path)
2023-08-02 21:53:35 +00:00
def _get_hdf5_paths( data_dir, type="training", validate=False ):
data_dir = str(data_dir)
key = f"/{type}/{_get_hdf5_path(data_dir)}"
2023-08-02 21:53:35 +00:00
2024-05-16 04:04:19 +00:00
def _validate( id, entry ):
phones = entry.attrs['phonemes']
duration = entry.attrs['duration']
if type not in _durations_map:
_durations_map[type] = {}
_durations_map[type][f"{key}/{id}"] = duration
if not validate:
return True
return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration
return [ Path(f"{key}/{id}") for id, entry in cfg.hdf5[key].items() if _validate(id, entry) ] if key in cfg.hdf5 else []
def _get_paths_of_extensions( path, extensions=_get_quant_extension(), validate=False ):
if isinstance(path, str):
path = Path(path)
def _validate(path):
if "".join(path.suffixes) not in extensions:
return False
if not _get_phone_path(path).exists() or not _get_quant_path(path).exists():
return False
if not validate:
return True
# to-do: find an easy way to determine size from pickled quants without loading
# to-do: find a consistent way to derive phoneme count from filesize (probably can't due to utf-8)
phones = len(_get_phones(_get_phone_path(path))) # _get_phone_path(path).stat().st_size // 2 + 1
return cfg.dataset.min_phones <= phones and phones <= cfg.dataset.max_phones
return [ p for p in list(path.iterdir()) if _validate(p) ] if path.exists() and path.is_dir() else []
2023-08-02 21:53:35 +00:00
def _load_quants(path, return_metadata=False) -> Tensor:
qnt = np.load(_get_quant_path(path), allow_pickle=True)[()]
if return_metadata:
return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16), qnt["metadata"]
return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16)
2023-08-02 21:53:35 +00:00
# prune consecutive spaces
def _cleanup_phones( phones, targets=[" "]):
return [ p for i, p in enumerate(phones) if p not in targets or ( p in targets and p != phones[i-1] ) ]
2023-08-02 21:53:35 +00:00
@cache
def _get_phones(path):
phone_path = _get_phone_path(path)
quant_path = _get_quant_path(path)
if phone_path.exists():
metadata = json.loads(open(phone_path, "r", encoding="utf-8").read())
elif quant_path.exists():
_, metadata = _load_quants( path, return_metadata=True )
else:
raise Exception(f"Could not load phonemes: {path}")
content = metadata["phonemes"]
return "".join(content)
2023-08-02 21:53:35 +00:00
def _interleaved_reorder(l, fn):
groups = defaultdict(list)
for e in l:
groups[fn(e)].append(e)
groups = {k: groups[k] for k in sorted(groups)}
for interleaved in zip_longest(*groups.values()):
for value in interleaved:
if value is not None:
yield value
class Dataset(_Dataset):
def __init__(
self,
phone_symmap=None,
training=False,
extra_paths_by_spkr_name: dict[str, list] = {},
):
super().__init__()
self._head = None
2023-08-19 01:58:07 +00:00
self.sampler = None
2023-08-02 21:53:35 +00:00
self.paths = []
self.training = training
self.dataset_type = "training" if self.training else "validation"
self.dataset = cfg.dataset.training if self.training else cfg.dataset.validation
self.sampler_type = cfg.dataset.sample_type if self.dataset_type == "training" else "path"
self.sampler_order = cfg.dataset.sample_order
self.sampler_shuffle = cfg.dataset.sample_shuffle
# to-do: do not do validation if there's nothing in the validation
# this just makes it be happy
if len(self.dataset) == 0:
self.dataset = cfg.dataset.training
# dict of paths keyed by speaker names
self.paths_by_spkr_name = _load_paths(self.dataset, self.dataset_type)
# cull speakers if they do not have enough utterances
if cfg.dataset.min_utterances > 0:
keys = list(self.paths_by_spkr_name.keys())
for key in keys:
if len(self.paths_by_spkr_name[key]) < cfg.dataset.min_utterances:
del self.paths_by_spkr_name[key]
# flatten paths
self.paths = list(itertools.chain.from_iterable(self.paths_by_spkr_name.values()))
# split dataset accordingly per GPU
if cfg.distributed and self.training:
"""
batches = len(self.paths) // world_size()
start = batches * global_rank()
end = batches * (global_rank() + 1)
self.paths = self.paths[start:end]
"""
self.paths = [ path for i, path in enumerate(self.paths) if i % world_size() == 0 ]
# recreate paths_by_spkr_name
self.paths_by_spkr_name = {}
for path in self.paths:
2024-06-01 15:30:13 +00:00
name = cfg.get_spkr( Path(path) )
if name not in self.paths_by_spkr_name:
self.paths_by_spkr_name[name] = []
self.paths_by_spkr_name[name].append( path )
# do it here due to the above
self.duration = 0
self.duration_map = _get_duration_map( self.dataset_type )
self.duration_buckets = {}
# store in corresponding bucket
for path in self.paths:
duration = self.duration_map[path]
self.duration += duration
# only calc duration if we're going to order by duration
if self.sampler_order != "duration":
continue
bucket = int(round(duration))
if bucket not in self.duration_buckets:
self.duration_buckets[bucket] = []
self.duration_buckets[bucket].append( ( Path(path), duration ) )
# ensure they're ordered
self.duration_buckets = dict(sorted(self.duration_buckets.items()))
# sort by duration
if self.sampler_order == "duration":
flattened = {}
# sort and interleave
for bucket in self.duration_buckets:
# sort by duration
self.duration_buckets[bucket].sort( key=lambda x: x[1] )
# split to retain tuples
flattened[bucket] = self.duration_buckets[bucket]
# replace with path
flattened[bucket] = [ x[0] for x in flattened[bucket] ]
# flatten by paths
flattened[bucket] = [*_interleaved_reorder(flattened[bucket], self.get_speaker)]
# flatten paths
self.paths = list(itertools.chain.from_iterable(flattened.values()))
else:
# just interleave
self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)]
# dict of speakers keyed by speaker group
self.spkrs_by_spkr_group = {}
for data_dir in self.dataset:
spkr = cfg.get_spkr( data_dir / "dummy" )
spkr_group = cfg.get_spkr_group( data_dir / "dummy" )
if spkr not in self.paths_by_spkr_name or len(self.paths_by_spkr_name[spkr]) < cfg.dataset.min_utterances:
continue
if spkr_group not in self.spkrs_by_spkr_group:
self.spkrs_by_spkr_group[spkr_group] = []
self.spkrs_by_spkr_group[spkr_group].append( spkr )
self.spkr_groups = list(self.spkrs_by_spkr_group.keys())
self.noise_paths = _load_paths(cfg.dataset.noise, "noise")
self.noise_paths = list(itertools.chain.from_iterable(self.noise_paths.values()))
2023-08-02 21:53:35 +00:00
self.phone_symmap = phone_symmap or self._get_phone_symmap()
self.spkr_symmap = self._get_spkr_symmap()
self.spkr_group_symmap = self._get_spkr_group_symmap()
self.lang_symmap = self._get_lang_symmap()
self.tone_symmap = self._get_tone_symmap()
self.task_symmap = self._get_task_symmap()
2023-08-02 21:53:35 +00:00
# grab IDs for bos, space, and eos for easy input creation later
self.empty_text = [ cfg.tokenizer._bos_token, cfg.tokenizer.get_vocab()[" "], cfg.tokenizer._eos_token ]
# have it fetch at training time if any is invalid, because the tokenizer obj might not have it easily fetchable ahead of itme
# encoding before parallelizing things causes things to whine
if self.empty_text[0] is None or self.empty_text[-1] is None:
self.empty_text = None
2023-08-02 21:53:35 +00:00
# assert len(self.phone_symmap) < 256, "Unique token count should be [0,255] to fit within uint8"
self.text_dtype = torch.uint8 if len(self.phone_symmap) < 256 else torch.int16
if len(self.paths) == 0:
raise ValueError(f"No valid path is found for {self.dataset_type}")
if self.sampler_type == "path":
if self.sampler_order == "duration" and cfg.dataset.sample_max_duration_batch > 0:
2024-06-30 03:14:35 +00:00
self.sampler = BatchedOrderedSampler(
self.duration_buckets if not self.sampler_state_dict_path.exists() else {}, # pass nothing if we're just going to load from a state anyways
max_duration=cfg.dataset.sample_max_duration_batch,
max_batch_size=cfg.hyperparameters.batch_size if self.training else cfg.evaluation.batch_size,
shuffle=self.sampler_shuffle
2024-06-30 03:14:35 +00:00
)
else:
self.sampler = OrderedSampler( len(self) ) if not self.sampler_shuffle else RandomSampler( len(self) )
self.samplers = {}
self.spkr_samplers = {}
else:
self.sampler = RandomSampler( len(self) )
self.samplers = { name: PoolSampler( paths, keep_all=True, shuffle=self.sampler_shuffle ) for name, paths in self.paths_by_spkr_name.items() }
self.spkr_samplers = { name: PoolSampler( [*set(speakers)], keep_all=True, shuffle=self.sampler_shuffle ) for name, speakers in self.spkrs_by_spkr_group.items() }
# loading validation state dict causes issues
if self.dataset_type != "validation":
self.load_state_dict()
@cached_property
def sampler_state_dict_path(self):
return cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt"
def get_speaker(self, path):
if isinstance(path, str):
path = Path(path)
res = cfg.get_spkr(path)
return res
def get_speaker_group(self, path):
if isinstance(path, str):
path = Path(path)
res = cfg.get_spkr_group(path)
return res
def get_language(self, speaker_group):
lang = "en"
for k, v in cfg.dataset.speaker_languages.items():
if speaker_group in v:
lang = k
break
return lang
2023-08-02 21:53:35 +00:00
@cached_property
def spkrs(self):
return sorted({self.get_speaker(path) for path in self.paths})
2023-08-02 21:53:35 +00:00
@cached_property
def tasks(self):
return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse"
def save_state_dict(self, path = None):
if path is None:
path = self.sampler_state_dict_path
if self.sampler_type == "path":
state_dict = self.sampler.get_state()
else:
state_dict = {
"samplers": { name: sampler.get_state() for name, sampler in self.samplers.items() },
"spkr_samplers": { name: sampler.get_state() for name, sampler in self.spkr_samplers.items() },
}
torch_save(state_dict, path)
2023-09-04 02:27:13 +00:00
def load_state_dict(self, path = None):
if path is None:
path = self.sampler_state_dict_path
2023-09-04 02:27:13 +00:00
if not path.exists():
return
state_dict = torch_load(path)
if self.sampler_type == "path":
2024-06-15 17:29:03 +00:00
state_dict = self.sampler.set_state(state_dict)
else:
2023-09-04 02:27:13 +00:00
for name, sampler in state_dict["samplers"].items():
if name not in self.samplers:
continue
2024-06-15 17:29:03 +00:00
self.samplers[name].set_state( sampler )
for name, sampler in state_dict["spkr_samplers"].items():
if name not in self.spkr_samplers:
continue
2024-06-15 17:29:03 +00:00
self.spkr_samplers[name].set_state( sampler )
2023-09-04 02:27:13 +00:00
def _get_phone_symmap(self):
return get_phone_symmap()
2023-08-02 21:53:35 +00:00
def _get_spkr_symmap(self):
return {s: i for i, s in enumerate(self.spkrs)}
def _get_spkr_group_symmap(self):
return {s: i for i, s in enumerate(self.spkr_groups)}
def _get_lang_symmap(self):
return get_lang_symmap()
def _get_tone_symmap(self):
return get_tone_symmap()
def _get_task_symmap(self):
return get_task_symmap()
def sample_noise(self):
path = random.choice(self.noise_paths)
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16)
else:
qnt = _load_quants(path, return_metadata=False)
return qnt
2023-08-18 00:07:59 +00:00
def sample_speakers(self, ignore=[]):
choices = set(self.spkrs) - set(ignore)
return random.choice([*choices])
def sample_utterance(self, spkr_name, ignore=[]):
choices = [*(set(self.paths_by_spkr_name[spkr_name]) - set(ignore))]
if len(choices) == 0:
return None, None, None
path = random.choice(choices)
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
if key not in cfg.hdf5:
raise RuntimeError(f'Key of Path ({path}) not in HDF5: {key}')
#metadata = cfg.hdf5[key].attrs
metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() }
text = cfg.hdf5[key]["text"][:]
resps = cfg.hdf5[key]["audio"][:, :]
text = torch.from_numpy(text).to(self.text_dtype)
resps = torch.from_numpy(resps).to(torch.int16)
"""
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
"""
else:
resps, metadata = _load_quants(path, return_metadata=True)
text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype)
"""
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
"""
return path, text, resps
def sample_prompts(self, spkr_name, ignore, should_trim=True):
if not cfg.dataset.prompt_duration_range or cfg.dataset.prompt_duration_range[-1] == 0:
return None
2023-08-02 21:53:35 +00:00
prom_list = []
choices = set(self.paths_by_spkr_name[spkr_name]) - {ignore}
choices = [*choices]
# no other utterances, it'd make more sense to prune speakers with only one utterance in the validation step
2023-08-02 21:53:35 +00:00
if len(choices) == 0:
choices = [*set(self.paths_by_spkr_name[spkr_name])]
"""
2023-08-02 21:53:35 +00:00
raise ValueError(
f"Failed to find another different utterance for {spkr_name}."
)
"""
2023-08-02 21:53:35 +00:00
prom_length = 0
trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second) if trim else 0
2023-08-02 21:53:35 +00:00
for _ in range(cfg.dataset.max_prompts):
path = random.choice(choices)
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
if "audio" not in cfg.hdf5[key]:
2024-05-12 03:58:38 +00:00
_logger.warning(f'MISSING AUDIO: {key}')
continue
qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16)
2023-08-02 21:53:35 +00:00
else:
qnt = _load_quants(path, return_metadata=False)
2023-08-02 21:53:35 +00:00
if 0 < trim_length and trim_length < qnt.shape[0]:
qnt = trim( qnt, trim_length, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device )
2023-08-02 21:53:35 +00:00
prom_list.append(qnt)
prom_length += qnt.shape[0]
2023-08-02 21:53:35 +00:00
if prom_length >= trim_length or random.random() > cfg.dataset.random_utterance:
2023-08-02 21:53:35 +00:00
break
# might be better to decode => concat waveforms with silence in between => reencode
# as you technically can't just append encodec sequences together like this without issues
prom = concat_audio( *prom_list, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device )
2023-08-02 21:53:35 +00:00
if 0 < trim_length and trim_length < prom.shape[0]:
prom = trim( prom, trim_length, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device )
2023-08-02 21:53:35 +00:00
return prom
def __getitem__(self, index):
if self.empty_text is None:
self.empty_text = tokenize(" ")
bos_id, space_id, eos_id = self.empty_text
if self.sampler_type == "group":
spkr_group = self.spkr_groups[index]
#spkr_group_id = self.spkr_group_symmap[spkr_group]
spkr_name = self.spkr_samplers[spkr_group].sample()
spkr_id = self.spkr_symmap[spkr_name]
path = self.samplers[spkr_name].sample()
elif self.sampler_type == "speaker":
spkr_name = self.spkrs[index]
spkr_id = self.spkr_symmap[spkr_name]
2023-09-04 02:27:13 +00:00
path = self.samplers[spkr_name].sample()
spkr_group = self.get_speaker_group(path)
#spkr_group_id = self.spkr_group_symmap[spkr_group]
2023-08-02 21:53:35 +00:00
else:
path = self.paths[index]
spkr_name = self.get_speaker(path)
spkr_id = self.spkr_symmap[spkr_name]
spkr_group = self.get_speaker_group(path)
#spkr_group_id = self.spkr_group_symmap[spkr_group]
2023-08-02 21:53:35 +00:00
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
2024-04-29 03:28:29 +00:00
if key not in cfg.hdf5:
raise RuntimeError(f'Key of Path ({path}) not in HDF5: {key}')
# I need to do some weird coersion to a normal dict because it'll bitch about Hdf5 objects not being pickleable in worker processes
metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() }
text = cfg.hdf5[key]["text"][:]
resps = cfg.hdf5[key]["audio"][:, :]
text = torch.from_numpy(text).to(self.text_dtype)
resps = torch.from_numpy(resps).to(torch.int16)
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
text_string = metadata["text"] if "text" in metadata else None
2023-08-02 21:53:35 +00:00
else:
resps, metadata = _load_quants(path, return_metadata=True)
text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype)
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
text_string = metadata["text"] if "text" in metadata else None
if not lang:
lang = self.get_language(spkr_group)
if not tone:
tone = "neutral"
lang = torch.tensor([self.lang_symmap[lang]]).to(torch.uint8)
tone = torch.tensor([self.tone_symmap[tone]]).to(torch.uint8)
# a bool to easily experiment with two mindsets later
naive = cfg.experimental
# append additional prompts in an attempt to artifically increase lengths / offer new data
if cfg.dataset.max_resps > 1 and random.random() < cfg.dataset.p_resp_append:
ignore_paths = []
for _ in range( 1, cfg.dataset.max_resps ):
path, txt, qnt = self.sample_utterance(spkr_name, ignore=ignore_paths)
ignore_paths.append(path)
# <s>[original text]</s><s>[new text]</s>
if naive:
text = torch.concat([ text, txt ])
# <s>[original text] [new text]</s>
# removes the original text's </s>, includes a space, and remove the new text's <s>
else:
text = torch.concat([ text[:-1], torch.tensor([self.phone_symmap[" "]]).to(torch.int16), txt[1:] ])
# might be better to decode => concat waveforms with silence in between => reencode
# as you technically can't just append encodec sequences together like this without issues
resps = concat_audio( resps, qnt, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device )
task = random.choice(self.tasks)
if f'<{task}>' not in self.task_symmap:
raise Exception(f'Task not defined: {task}')
2024-07-19 04:25:32 +00:00
# Base TTS (<text><prompt> => <resp>)
if task == "tts":
2024-07-19 04:25:32 +00:00
proms = self.sample_prompts(spkr_name, ignore=path)
if cfg.dataset.inject_noise_in_prom:
# sample random noise
noise = self.sample_noise()
# extend the noise to fill the target audio
noise = repeat_extend_audio(noise, proms.shape[0])
# create the input prompt by merging the target audio with the noise
proms = merge_audio( proms, noise, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device )
2024-07-19 04:25:32 +00:00
# VALL-E Continuous (<text><partial resp> => <remaining resp> )
# (this could just be sampled as <text a><text b><audio a> => <audio b>, but I need to experiment with it)
elif task == "tts-c":
# trim a piece of the output response
if naive:
trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second)
proms = resps[:trim_length, :]
resps = resps[trim_length:, :]
else:
path, txt, qnt = self.sample_utterance(spkr_name)
# <s>[original text]</s><s>[new text]</s>
if naive:
text = torch.concat([ text, txt ])
# <s>[original text] [new text]</s>
# removes the original text's </s>, includes a space, and remove the new text's <s>
else:
2024-07-19 04:25:32 +00:00
text = torch.concat([ text[:-1], torch.tensor([space_id]).to(torch.int16), txt[1:] ])
# set prompt as initial response
proms = resps
# set target as newly sampled response
resps = qnt
2024-07-19 04:25:32 +00:00
# inject task token
proms = [
proms,
task,
]
2024-09-06 04:21:18 +00:00
# Base STT (<resp> => <text>)
elif task == "stt":
2024-09-06 04:21:18 +00:00
proms = [
task
]
2024-07-19 04:25:32 +00:00
# noise suppression (<text>? <resp+noise> => <resp>)
# speech removal (<text>?<resp+noise> => <noise>)
elif task == "ns" or task == "sr":
# sample random noise
2023-08-18 00:07:59 +00:00
noise = self.sample_noise()
# extend the noise to fill the target audio
noise = repeat_extend_audio(noise, resps.shape[0])
# create the input prompt by merging the target audio with the noise
proms = merge_audio( resps, noise, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device )
2024-07-19 04:25:32 +00:00
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = None
# inject task token
proms = [
task,
proms
]
# set the target to just be the noise if <sr>
if task == "sr":
resps = noise
2024-07-19 04:25:32 +00:00
# target speech extraction ( <text><prom><resp + other resp> => <resp> )
elif task == "tse":
2024-07-19 04:25:32 +00:00
# sample a prompt
proms = self.sample_prompts(spkr_name, ignore=path)
# sample another speaker
_, __, other_resps = self.sample_utterance(self.sample_speakers(ignore=[spkr_name]))
# overlay the random speaker over the target audio
2024-07-19 04:25:32 +00:00
other_resps = merge_audio( resps, other_resps, scale=[1, random.uniform(0.5, 0.75)], device=cfg.dataset.reencode_device )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = None
# stitch together the proms
proms = [
2024-07-19 04:25:32 +00:00
proms,
task,
2024-07-19 04:25:32 +00:00
other_resps,
]
# clean speech editing
elif task == "cse" or task == "nse":
# speech editing would require higher quality transcription data (phoneme level/word level) unfortunately
# as I need to get a good clean point to trim into
# instead we'll just sample a bunch of utterances
samples = []
for _ in range( 4 ):
sampled = self.sample_utterance(spkr_name, ignore=[s[0] for s in samples])
samples.append( sampled )
pre_text, mid_text, post_text, edit_text = [ s[1][1:-1] for s in samples ]
pre_prom, mid_prom, post_prom, edit_prom = [ s[2] for s in samples ]
# randomly drop out pre
if random.random() < 0.125:
pre_text = None
pre_prom = None
# randomly drop out post
2024-07-19 04:25:32 +00:00
elif random.random() < 0.125:
post_text = None
post_prom = None
# create new text
2024-07-19 04:25:32 +00:00
text = concat_audio(
torch.tensor( [ bos_id ] ).to(dtype=self.text_dtype), # <s>
2024-07-19 04:25:32 +00:00
pre_text,
None if pre_text is None else torch.tensor( [ space_id ] ).to(dtype=self.text_dtype), # " "
2024-07-19 04:25:32 +00:00
edit_text,
None if post_text is None else torch.tensor( [ space_id ] ).to(dtype=self.text_dtype), # " "
2024-07-19 04:25:32 +00:00
post_text,
torch.tensor( [ eos_id ] ).to(dtype=self.text_dtype), # </s>
2024-07-19 04:25:32 +00:00
reencode=False,
)
if task == "nse":
# sample random noise
noise = self.sample_noise()
# it might be better to extend the noise to the sum of the pre+mid+post or pre+edit+post to keep the noise truly coherent
# but it's noise, it's supposed to be random
def noise_proms( p ):
# ignore if we turned it off
if p is None:
return None
# extend the noise to fill the target audio
n = repeat_extend_audio(noise, p.shape[0])
# merge the noise over the utterance
return merge_audio(p, n, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device)
# apply noise to all pieces
pre_prom = noise_proms( pre_prom )
mid_prom = noise_proms( mid_prom )
post_prom = noise_proms( post_prom )
edit_prom = noise_proms( edit_prom )
# create new prom
proms = [
pre_prom,
2024-07-19 04:25:32 +00:00
"soe",
"mask" if task == "cse" else mid_prom,
"eoe",
post_prom,
]
# create new resp
resps = concat_audio(
2024-07-19 04:25:32 +00:00
pre_prom,
edit_prom,
post_prom,
reencode=cfg.dataset.reencode_on_concat,
device=cfg.dataset.reencode_device,
)
else:
raise Exception(f'Undefined task: {task}')
2023-08-02 21:53:35 +00:00
2024-07-19 04:25:32 +00:00
if text is None:
text = torch.tensor([bos_id, eos_id]).to(self.text_dtype)
# pad the target with silence
2024-08-09 00:38:55 +00:00
if random.random() < cfg.dataset.p_resp_pad_silence:
resps = pad_codes_with_silence( resps )
2023-08-02 21:53:35 +00:00
return dict(
index=index,
path=Path(path),
2023-08-02 21:53:35 +00:00
spkr_name=spkr_name,
spkr_id=spkr_id,
task=task,
lang=lang,
tone=tone,
2023-08-02 21:53:35 +00:00
text=text,
proms=proms,
resps=resps,
metadata=metadata,
2023-08-02 21:53:35 +00:00
)
def head_(self, n):
self._head = n
def training_(self, value):
self.training = value
def __len__(self):
if self.sampler_type == "group":
return min(len(self.spkr_groups), self._head or len(self.spkr_groups))
if self.sampler_type == "speaker":
return min(len(self.spkrs), self._head or len(self.spkrs))
2023-08-02 21:53:35 +00:00
return min(len(self.paths), self._head or len(self.paths))
def collate_fn(samples: list[dict]):
batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]}
return batch
def _seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def _create_dataloader(dataset, training):
kwargs = dict(
shuffle=False,
batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size,
2023-08-02 21:53:35 +00:00
drop_last=training,
sampler=dataset.sampler if training else None,
) if not isinstance(dataset.sampler, BatchedOrderedSampler) else dict(
batch_sampler=dataset.sampler,
)
return DataLoader(
dataset=dataset,
2023-08-02 21:53:35 +00:00
num_workers=cfg.dataset.workers,
collate_fn=collate_fn,
2023-08-24 22:05:56 +00:00
persistent_workers=cfg.dataset.workers > 1,
pin_memory=False,
2023-08-02 21:53:35 +00:00
worker_init_fn=_seed_worker,
**kwargs,
2023-08-02 21:53:35 +00:00
)
def create_datasets():
train_dataset = Dataset( training=True )
val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False )
2023-08-02 21:53:35 +00:00
return train_dataset, val_dataset
def create_train_dataloader():
train_dataset = Dataset( training=True )
train_dl = _create_dataloader(train_dataset, training=True)
_logger.info(str(train_dataset.phone_symmap))
_logger.info(str(train_dataset.spkr_symmap))
_logger.info(str(train_dataset.spkr_group_symmap))
_logger.info(f"#samples (train): {len(train_dataset)}.")
_logger.info(f"#duration (train): {str(train_dataset.duration)}.")
return train_dl
def create_val_dataloader():
val_dataset = Dataset( training=False )
val_dl = _create_dataloader(val_dataset, training=False)
_logger.info(str(val_dataset.phone_symmap))
_logger.info(str(val_dataset.spkr_symmap))
_logger.info(str(val_dataset.spkr_group_symmap))
_logger.info(f"#samples (val): {len(val_dataset)}.")
_logger.info(f"#duration (val): {str(val_dataset.duration)}.")
return val_dl
2023-08-02 21:53:35 +00:00
def create_train_val_dataloader():
train_dataset, val_dataset = create_datasets()
# deepcopy is slow
subtrain_dataset = Dataset( training=True )
if subtrain_dataset.sampler_type == "path":
subtrain_dataset.head_(cfg.evaluation.size)
2023-08-02 21:53:35 +00:00
train_dl = _create_dataloader(train_dataset, training=True)
val_dl = _create_dataloader(val_dataset, training=False)
subtrain_dl = _create_dataloader(subtrain_dataset, training=False)
_logger.info(str(train_dataset.phone_symmap))
_logger.info(str(train_dataset.spkr_symmap))
_logger.info(str(train_dataset.spkr_group_symmap))
2023-08-02 21:53:35 +00:00
_logger.info(f"#samples (train): {len(train_dataset)}.")
_logger.info(f"#samples (val): {len(val_dataset)}.")
_logger.info(f"#samples (subtrain): {len(subtrain_dataset)}.")
_logger.info(f"#duration (train): {str(train_dataset.duration)}.")
_logger.info(f"#duration (val): {str(val_dataset.duration)}.")
_logger.info(f"#duration (subtrain): {str(subtrain_dataset.duration)}.")
assert isinstance(subtrain_dl.dataset, Dataset)
return train_dl, subtrain_dl, val_dl
# parse dataset into better to sample metadata
def create_dataset_metadata( skip_existing=True ):
symmap = get_phone_symmap()
root = str(cfg.data_dir)
metadata_root = str(cfg.metadata_dir)
2024-04-29 03:28:29 +00:00
cfg.metadata_dir.mkdir(parents=True, exist_ok=True)
def add( dir, type="training", audios=True, texts=True ):
name = str(dir)
name = name.replace(root, "")
speaker_name = name
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
try:
metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read())
except Exception as e:
metadata = {}
if not os.path.isdir(f'{root}/{name}/'):
return
# tqdm.write(f'{root}/{name}')
files = os.listdir(f'{root}/{name}/')
# grab IDs for every file
ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files }
wrote = False
for id in tqdm(ids, desc=f"Processing {name}"):
try:
quant_path = Path(f'{root}/{name}/{id}{_get_quant_extension()}')
if audios and not quant_path.exists():
continue
key = f'{type}/{speaker_name}/{id}'
if skip_existing and id in metadata:
continue
wrote = True
if id not in metadata:
metadata[id] = {}
2024-05-16 04:04:19 +00:00
utterance_metadata = {}
if audios:
2024-05-16 04:04:19 +00:00
# ideally we'll encode Encodec-based audio in a similar manner because np has smaller files than pt
dac = np.load(quant_path, allow_pickle=True)[()]
2024-05-16 04:04:19 +00:00
qnt = torch.from_numpy(dac["codes"].astype(int))[0].t().to(dtype=torch.int16)
if "text" in dac["metadata"]:
utterance_metadata["text"] = dac["metadata"]["text"]
if "phonemes" in dac["metadata"]:
utterance_metadata["phonemes"] = dac["metadata"]["phonemes"]
if "language" in dac["metadata"]:
utterance_metadata["language"] = dac["metadata"]["language"]
if "original_length" in dac["metadata"] and "sample_rate" in dac["metadata"]:
utterance_metadata["duration"] = dac["metadata"]["original_length"] / dac["metadata"]["sample_rate"]
2024-05-16 04:04:19 +00:00
for k, v in utterance_metadata.items():
metadata[id][k] = v
except Exception as e:
2024-05-16 04:04:19 +00:00
tqdm.write(f'Error while processing {id}: {e}')
if wrote:
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
# training
for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"):
add( data_dir, type="training" )
# validation
for data_dir in tqdm(sorted(cfg.dataset.validation), desc='Processing Validation'):
add( data_dir, type="validation" )
# noise
for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'):
add( data_dir, type="noise", texts=False )
# parse yaml to create an hdf5 file
def create_dataset_hdf5( skip_existing=True ):
cfg.dataset.use_hdf5 = True
cfg.load_hdf5(write=True)
hf = cfg.hdf5
2023-08-02 21:53:35 +00:00
symmap = get_phone_symmap()
2024-04-29 03:28:29 +00:00
root = str(cfg.data_dir)
metadata_root = str(cfg.metadata_dir)
2023-08-02 21:53:35 +00:00
def add( dir, type="training", audios=True, texts=True ):
2024-04-29 03:28:29 +00:00
name = str(dir)
name = name.replace(root, "")
# yucky
speaker_name = name
if "LibriTTS-R" in speaker_name:
speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox")
2024-04-29 03:28:29 +00:00
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
2024-04-29 03:28:29 +00:00
metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read())
2023-08-02 21:53:35 +00:00
if not os.path.isdir(f'{root}/{name}/'):
return
2023-08-02 21:53:35 +00:00
files = os.listdir(f'{root}/{name}/')
# grab IDs for every file
ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files }
"""
# rephonemizes if you fuck up and use and old tokenizer...
for id, entry in tqdm(metadata.items(), desc=f"Processing {name}"):
key = f'{type}/{speaker_name}/{id}'
if key not in hf:
continue
group = hf[key]
if "phonemes" not in entry:
continue
if "text" not in group:
continue
txt = entry["phonemes"]
phn = "".join(txt)
phn = cfg.tokenizer.encode(phn)
phn = np.array(phn).astype(np.uint8)
del group["text"]
group.create_dataset('text', data=phn, compression='lzf')
"""
2023-08-02 21:53:35 +00:00
for id in tqdm(ids, desc=f"Processing {name}"):
try:
quant_exists = os.path.exists(f'{root}/{name}/{id}{_get_quant_extension()}') if audios else True
text_exists = os.path.exists(f'{root}/{name}/{id}{_get_phone_extension()}') if texts else True
2023-08-02 21:53:35 +00:00
if not quant_exists:
continue
2023-08-02 21:53:35 +00:00
key = f'{type}/{speaker_name}/{id}'
2024-04-29 03:28:29 +00:00
if skip_existing and key in hf:
continue
group = hf.create_group(key) if key not in hf else hf[key]
if id not in metadata:
metadata[id] = {}
2024-05-16 04:04:19 +00:00
utterance_metadata = {}
# audio
if audios:
2024-05-16 04:04:19 +00:00
dac = np.load(f'{root}/{name}/{id}{_get_quant_extension()}', allow_pickle=True)[()]
qnt = torch.from_numpy(dac["codes"].astype(int))[0].t().to(dtype=torch.int16)
if "text" in dac["metadata"]:
utterance_metadata["text"] = dac["metadata"]["text"]
if "phonemes" in dac["metadata"]:
utterance_metadata["phonemes"] = dac["metadata"]["phonemes"]
if "language" in dac["metadata"]:
utterance_metadata["language"] = dac["metadata"]["language"]
if "original_length" in dac["metadata"] and "sample_rate" in dac["metadata"]:
utterance_metadata["duration"] = dac["metadata"]["original_length"] / dac["metadata"]["sample_rate"]
2024-04-29 03:28:29 +00:00
if "audio" not in group:
2024-05-16 04:04:19 +00:00
group.create_dataset('audio', data=qnt.numpy().astype(np.int16), compression='lzf')
# text
if texts:
2024-05-16 04:04:19 +00:00
if not utterance_metadata and text_exists:
utterance_metadata = json.loads(open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read())
2024-05-16 04:04:19 +00:00
phn = "".join(utterance_metadata["phonemes"])
phn = cfg.tokenizer.encode(phn)
phn = np.array(phn).astype(np.uint8)
2024-04-29 03:28:29 +00:00
if "text" not in group:
group.create_dataset('text', data=phn, compression='lzf')
2024-05-16 04:04:19 +00:00
for k, v in utterance_metadata.items():
group.attrs[k] = v
metadata[id][k] = v
2024-04-29 03:28:29 +00:00
except Exception as e:
2024-05-16 04:04:19 +00:00
tqdm.write(f'Error while processing {id}: {e}')
2024-04-29 03:28:29 +00:00
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
2023-08-02 21:53:35 +00:00
# training
for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"):
2023-08-02 21:53:35 +00:00
add( data_dir, type="training" )
# validation
for data_dir in tqdm(cfg.dataset.validation, desc='Processing Validation'):
2023-08-02 21:53:35 +00:00
add( data_dir, type="validation" )
# noise
for data_dir in tqdm(cfg.dataset.noise, desc='Processing Noise'):
add( data_dir, type="noise", texts=False )
2023-08-02 21:53:35 +00:00
# write symmap
if "symmap" in hf:
del hf['symmap']
2023-08-02 21:53:35 +00:00
hf.create_dataset('symmap', data=json.dumps(symmap))
2023-08-02 21:53:35 +00:00
hf.close()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Save trained model to path.")
parser.add_argument("--action", type=str)
parser.add_argument("--tasks", type=str)
2024-06-09 16:39:43 +00:00
args, unknown = parser.parse_known_args()
task = args.action
cfg.dataset.workers = 1
if args.action == "hdf5":
create_dataset_hdf5()
2024-05-12 18:02:15 +00:00
elif args.action == "list-dataset":
dataset = []
for group in os.listdir(cfg.data_dir):
for name in os.listdir(cfg.data_dir / group):
if len(os.listdir(cfg.data_dir / group / name)) == 0:
continue
dataset.append(f'{group}/{name}')
_logger.info(json.dumps(dataset))
elif args.action == "metadata":
create_dataset_metadata()
elif args.action == "sample":
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
samples = {
"training": [ next(iter(train_dl)), next(iter(train_dl)) ],
"evaluation": [ next(iter(subtrain_dl)), next(iter(subtrain_dl)) ],
#"validation": [ next(iter(val_dl)), next(iter(val_dl)) ],
}
2024-05-12 12:30:59 +00:00
Path("./data/sample-test/").mkdir(parents=True, exist_ok=True)
for k, v in samples.items():
for i in range(len(v)):
for j in tqdm(range(len(v[i]['proms'])), desc="Decoding..."):
"""
2024-05-12 12:30:59 +00:00
"""
try:
decode_to_file( v[i]['proms'][j], f"./data/sample-test/{k}.{i}.{j}.proms.wav", device="cpu" )
except Exception as e:
_logger.info(f"Error while decoding prom {k}.{i}.{j}.wav: {str(e)}")
2024-05-12 12:30:59 +00:00
try:
decode_to_file( v[i]['resps'][j], f"./data/sample-test/{k}.{i}.{j}.resps.wav", device="cpu" )
except Exception as e:
_logger.info(f"Error while decoding resp {k}.{i}.{j}.wav: {str(e)}")
2024-05-12 12:30:59 +00:00
v[i]['proms'][j] = v[i]['proms'][j].shape
v[i]['resps'][j] = v[i]['resps'][j].shape
for k, v in samples.items():
for i in range(len(v)):
_logger.info(f'{k}[{i}]: {v[i]}')
elif args.action == "validate":
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
missing = set()
for i in range(len( train_dl.dataset )):
batch = train_dl.dataset[i]
text = batch['text']
phonemes = batch['metadata']['phonemes']
decoded = [ cfg.tokenizer.decode(token) for token in text[1:-1] ]
for i, token in enumerate(decoded):
if token != "<unk>":
continue
phone = phonemes[i]
_logger.info( f"{batch['text']}: {batch['metadata']['phonemes']}" )
missing |= set([phone])
_logger.info( f"Missing tokens: {missing}" )
elif args.action == "tasks":
index = 0
cfg.dataset.tasks_list = args.tasks.split(",")
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
batch = next(iter(train_dl))
for text, resps, proms, task in zip(batch["text"], batch["resps"], batch["proms"], batch["task"]):
if task not in cfg.dataset.tasks_list:
continue
_logger.info( f'{text} {task} {cfg.model.resp_levels}')
_logger.info( f'{proms.shape} {resps.shape}' )
tokens = 0
tokens += sum([ text.shape[0] for text in batch["text"] ])
tokens += sum([ resps.shape[0] for resps in batch["resps"] ])
_logger.info( f'{tokens}' )
decode_to_file( proms, f"./data/{task}.proms.wav", device="cpu" )
decode_to_file( resps, f"./data/{task}.resps.wav", device="cpu" )
break