Commit Graph

178 Commits

Author SHA1 Message Date
mrq
58fb0a84db added experimental NAR only model (inferences text length, need more experimenting), AudioEmbedding logic cleanup (I still think it's being done wrong) 2024-06-08 15:42:02 -05:00
mrq
7d6fff24f9 un-tensor'd quant_level marker since it doesn't need to be one (I forgot why I had it as one but nothing seems to need it as a tensor that didn't already make it one) 2024-06-07 20:46:22 -05:00
mrq
f9f309281a ugh 2024-06-06 20:55:27 -05:00
mrq
a5c90348d9 head hurt 2024-06-06 20:51:31 -05:00
mrq
ee25d2e62e removed the need to supply targ_list + different AudioEmbedding + other things 2024-06-06 18:52:41 -05:00
mrq
fcac9503e2 cleanup 2024-06-06 13:08:02 -05:00
mrq
b2194b859a re-added loading multiple models because I'm now entertaining having split AR/NAR models again (and need a way to load both at once) 2024-06-06 09:48:43 -05:00
mrq
ff6fe6f1bc cleanup 2024-06-05 20:30:43 -05:00
mrq
880b4ecd1b cleanup, putting some thoughts in comments before I forget about them 2024-06-05 19:50:06 -05:00
mrq
48cd1054f9 madness 2024-06-04 23:48:51 -05:00
mrq
9e3f2e300f experimental "just have a token for what rvq level we're on" that seems to help all models (mamba almost works, but it might just have to be relegated as a pure AR model) 2024-06-04 23:23:31 -05:00
mrq
e0886c5a78 re-added mamba as a possible non-experimental arch backend (test trainer will set it as AR only, doing any NAR tasks lobotomizes it) 2024-06-04 22:41:22 -05:00
mrq
c93d5863fd fixes 2024-06-04 00:07:00 -05:00
mrq
7feeb944a0 probably insane with even entertaining going this route 2024-06-03 20:26:27 -05:00
mrq
e15c6c74c3 correctness 2024-05-30 20:50:45 -05:00
mrq
ddbacde0d1 DAC just doesn't work well enough...... 2024-05-25 11:07:52 -05:00
mrq
e3ef89f5aa 100x better for subtrain/eval to be by group instead 2024-05-19 16:40:14 -05:00
mrq
458b95d196 added option to split between text loss and audio loss (to-do: document this better), because it may or may not be a problem with LLaMA-backed models because my loss hovers around 3.9 / 56% accuracy despite sounding decent at the moment 2024-05-19 11:23:56 -05:00
mrq
3337c69e5a leverage between xformers and torch.backends.cuda.sdp_kernel for attention 2024-05-11 17:14:05 -05:00
mrq
2109712e5b resolve deprecation warning that doesn't show on my old training rig but does on my new one 2024-05-09 23:25:44 -05:00
mrq
0d5d545a40 crammed in DAdaptation (doesn't seem worth it) and ScheduleFree (forgot I wanted to weeks ago, seems promising), optimization wrapper cleanup, test trainer changes, etc. 2024-05-09 20:28:20 -05:00
mrq
33b7f81b94 small cleanups 2024-05-04 22:37:22 -05:00
mrq
ffa200eec7 added option to specify frames per second for the given audio representation (Encodec is 75Hz, DAC is 41Hz (at 24K sources)) 2024-05-04 12:05:41 -05:00
mrq
c494894261 simple DDP wrapper (for my NVlink test) 2024-05-04 11:48:26 -05:00
mrq
a7b43b98b5 renamed cfg.bitsandbytes to cfg.optimizations (and having it serve as cfg.optimizations.bitsandbytes) 2024-05-02 20:08:59 -05:00
mrq
b5d1456a09 backwards compat for my shitty old weights (was testing if disabling AudioEmbedding summing magically made things better (it did not)) 2024-04-29 22:14:01 -05:00
mrq
caad7ee3c9 final tweaks, hopefully 2024-04-28 22:28:29 -05:00
mrq
b251669536 forgot to fix up the test trainer 2024-04-21 14:58:04 -05:00
mrq
4f5c9e518a actually use the passed-through sample rate from encode for DAC because it does its own resampling I guess 2024-04-18 13:32:41 -05:00
mrq
5ff2b4aab5 finally swallowing the Descript-Audio-Codec pill (I guess I'm going to have to regenerate my entire dataset) 2024-04-17 20:39:35 -05:00
mrq
b0bd88833c refractor cleanup, had a revelation on how I can handle a batch of varying tasks 2024-04-16 21:04:48 -05:00
mrq
aa1e25fbf5 backwards compat for old YAMLs with models, option to set flash attention 2 for Llama (and derivatives), included syncdoth/RetNets torchscale retnet for shits and grins, etc. 2024-04-16 10:02:31 -05:00
mrq
545162195b deprecate sole AR/NAR model by only keeping the AR+NAR (the beauty of no one using this is that I can break compat as much as I want), add tone token for when I classify my dataset with tone/emotion in the future, some other things 2024-04-15 19:54:32 -05:00
mrq
d69a00e389 Properly pass retention_mask for retnet-HF, attempt to fix recurrent forward for retnet (doesn't work still) 2024-04-14 13:12:50 -05:00
mrq
f0c4baeb25 added Adagrad (experimenting with it), added 'extended' model size (16 layers instead of 12, experimenting with it) 2024-04-09 22:04:01 -05:00
mrq
4d75ee066c actually do the Linear replacement with TE's Linear 2024-04-09 14:41:13 -05:00
mrq
9d97eb5104 added FP8 support through NVIDIA/TransformerEngine, added RetNet_HF through syncdoth/RetNet (as an alternative to branch away from torchscale) 2024-04-08 20:14:51 -05:00
mrq
7075c2a5f0 added an option to allow injecting embeddings from another model, because it dawned upon me how valuable embeddings from a good model can be for subsequent trainings (defined under cfg.models._embeddings as a relative path to the yaml) 2024-04-04 19:11:49 -05:00
mrq
91062361af tweaks 2024-03-01 20:38:06 -06:00
mrq
f3c59c3e7e cleaner replacement code (because I realized BitNet had an implementation for it too), added calculating gradient norm and performing gradient clipping in local trainer (non-deepspeed) 2024-03-01 20:18:43 -06:00
mrq
47435207f7 Added cfg.bitsandbytes.replace as a less intrusive alternative to cfg.bitsandbytes.inject to replace all Linear modules in a model 2024-03-01 19:20:10 -06:00
mrq
35d78a2bb0 Yet Another Underlying Transformer Implementation (BitNet, will give it a few days to see how it fares) 2024-02-29 20:29:17 -06:00
mrq
3da1518ace added Mistral (non-Mixtral) backend, useless optimization when not training, proper adjustment of the LR for Prodigyopt through d_coeff (maybe), recurrent sampling for LLaMA/Mistral/Mixtral backends (again, doesn't actually work) 2024-01-31 21:48:36 -06:00
mrq
e799665759 experimental weighting of prom/resp embeds 2024-01-25 12:18:48 -06:00
mrq
c690aa509d fixes and compat (MoE-fying an existing model and retraining from there just ruins it after a second of audio...) 2023-12-25 21:20:32 -06:00
mrq
0db3203b21 added LLaMA/Mixtral (if experts>1) model arches, utilize XMoE's loss as well, set MoE frequency to 1 to make every layer MoE'd for RetNet, etc. (going to do tests without burning out again to see how things go) 2023-12-22 19:27:36 -06:00
mrq
9c198eb75a added torchscale XMOE integration (because Mixtral 8x7B seems very promising and I want to see if it works) 2023-12-20 18:45:58 -06:00
mrq
ed54f4ebec un 'experimental' the better target sequence preparation 2023-10-22 09:06:59 -05:00
mrq
09cda7d3f9 added sampling by speaker group name (might be better to de-emphasize the LibriVox/Audiobooks that are in large numbers, and emphasize the smaller pools), log cleanup 2023-10-16 19:30:38 -05:00
mrq
a539f6889f mucked around with the loss calculation, this seems better? 2023-10-13 18:22:21 -05:00
mrq
08bae355eb actually use langs from the dataloader 2023-10-11 21:21:50 -05:00
mrq
8740cdefc6 added initial support for languages (still testing, marked as model version 3), added experimental 'context extend by limiting the resp context' (untested) 2023-10-11 20:38:40 -05:00
mrq
7facacf7c9 separated samplers into its own file, don't bother copying the logits back to the GPU after sampling, it's not necessary 2023-10-11 12:25:31 -05:00
mrq
e727b6e5c1 changed dynamic temperature trigger to be a min-(n)ar-temp value between [0,(n)ar-temp), flags to set min temp, checkbox in web UI to request it 2023-10-10 17:02:33 -05:00
mrq
87db03dd93 trim the input prompt to 3 seconds when training NAR tasks (marked as experimental; the paper mentions doing so, but I don't know how much this would harm the retention heads) 2023-10-09 22:03:58 -05:00
mrq
27483e56f0 disabled preparing of SpeechX tasks, added dynamic temperature testing (to-do: test it, credited in the function) 2023-10-09 13:01:40 -05:00
mrq
777ba43305 oops 2023-10-03 15:01:37 -05:00
mrq
d12877ee09 added option to set probability of selecting the AR during training under a monolithic AR+NAR, added some more to-dos while I have them in mind 2023-10-02 16:52:42 -05:00
mrq
c0b25541e3 restructured some things with the model to remove dead weights 2023-09-20 19:10:59 -05:00
mrq
a6bfe43590 added mirostat sampling (given a partially trained model, it got far decent output than I expected, need to test on a better trained model) 2023-09-18 18:55:41 -05:00
mrq
4aef798135 added picking final candidate based on sum of score instead of first candidate (this changes nothing). 2023-09-13 13:19:11 -05:00
mrq
23a5fdd645 implemented a naive beam search (I really should be taking a break) 2023-09-12 21:28:07 -05:00
mrq
a6ae344e5b some comments 2023-09-12 16:04:45 -05:00
mrq
d07c63b9d8 unified more things with training the AR+NAR monolothic model 2023-09-12 15:54:41 -05:00
mrq
40ef34e1ca this embedding class definitely works, and migrating from the previous embedding weights seems to work. 2023-09-11 14:13:42 -05:00
mrq
a1f250ffac set default max_levels for NAR to 0 and implicitly set it to max resps levels because the previous way was implicitly assuming all models were outputting at 1+7 RVQ bins. 2023-09-10 20:33:33 -05:00
mrq
671dca88ee throw error when no reference audio is provided in the web UI because someone keeps doing that in the HF space 2023-09-10 15:50:50 -05:00
mrq
ba71020318 added option to limit (or exceed) inferenced RVQ-bin levels through the NAR 2023-09-10 13:50:13 -05:00
mrq
10c34c5b98 added a length-based decay factor for repetition penalty 2023-09-08 21:02:00 -05:00
mrq
14c78bae39 added lots of sampling options (top-k/top-p, repetition penalty, length penalty) 2023-09-08 20:30:54 -05:00
mrq
f69aad9c65 some day I'll get it right 2023-09-08 15:36:26 -05:00
mrq
b2907ae7e0 seems that my PromEmbedding/RespEmbedding doesn't actually work all that well, naively using dedicated MultiEmbeddings for AR/NAR in the monolithic model is the best way to go 2023-09-08 01:03:24 -05:00
mrq
ab5134f385 tweaks and fixes 2023-09-07 17:08:38 -05:00
mrq
b2c2dec291 added homebrewed per-RVQ-bin embedding solutions 2023-09-07 16:48:02 -05:00
mrq
e7a67410d1 oops 2023-09-07 09:14:03 -05:00
mrq
712808494f added support for optional prodigy optimizer (https://github.com/konstmish/prodigy) although it consumes a lot more VRAM per parameter 2023-09-06 20:33:16 -05:00
mrq
7ce06432fd fixed the AR+NAR dual model, the resp_emb has to be split up (classifier might too) 2023-09-06 19:33:39 -05:00
mrq
100ca6b7d0 added option to use SGD optimizer through the YAML, added option to pass in additional optimizer parameters through the YAML, added experimental unified AR+NAR model (does not seem fruitful in testing) 2023-09-06 18:58:35 -05:00