Commit Graph

430 Commits

Author SHA1 Message Date
mrq
d319d33368 haha 2024-09-04 14:52:26 -05:00
mrq
619369236b ugh 2024-08-30 21:10:57 -05:00
mrq
168e203942 ugh 2024-08-30 14:39:07 -05:00
mrq
685f4faec0 ugh 2024-08-30 10:46:26 -05:00
mrq
32287710a2 moved prints to use logger, edited readme (fused_attn doesnt seem stable for training) 2024-08-29 13:27:16 -05:00
mrq
d423bc03c2 fixed attentions for MoE 2024-08-27 17:02:42 -05:00
mrq
b7b99a25f1 added ability to specify attention backend for CLI and webui (because im tired of editing the yaml) 2024-08-26 19:33:51 -05:00
mrq
0d706ec6a1 added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm 2024-08-26 19:13:34 -05:00
mrq
6b0891448c pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good) 2024-08-25 20:07:27 -05:00
mrq
40e1799adc fixed xformers and flash_attn to actually work now 2024-08-19 01:03:35 -05:00
mrq
29c35528e5 the sooner I accept there's no FA for V100s the sooner I'll go to bed 2024-08-18 23:54:33 -05:00
mrq
d636edd3a2 added flash_attn LlamaAttention (including flash_attn==1.0.9) 2024-08-18 20:51:14 -05:00
mrq
054d28573a my DAC dataset again managed to only have some utterances with only 8 of 9 RVQ levels, this fixes an oversight from it 2024-08-09 21:18:01 -05:00
mrq
2a1794c084 ughghghhhh 2024-08-09 21:15:01 -05:00
mrq
ed373957e2 maybe not 2024-08-09 11:38:08 -05:00
mrq
c658a7b440 make loss scaling opt-in rather than automatically determined (because it seems a DAC-based model really doesnt like loss scaling) 2024-08-09 10:51:36 -05:00
mrq
d04f6911b4 oops 2024-08-08 19:38:55 -05:00
mrq
0aa59e6f3f uncommented block that writes the metadata on HDF5 creation 2024-08-08 19:21:29 -05:00
mrq
79a6781c9e fix vall_e.data --action=hdf5 actually transcribing because past me completely forgot it tried to already put the transcribe/process dataset scripts inside the module before 2024-08-08 07:51:42 -05:00
mrq
949339a3fa do not include SDPA attention if there's no available SDPA backends 2024-08-06 20:42:39 -05:00
mrq
613024ec0d ugh 2024-08-06 20:35:15 -05:00
mrq
eac353cd0b busy work and cleanup while I wait for 1TB of audio to quantize... again. 2024-08-06 20:23:33 -05:00
mrq
f284c7ea9c do mixed-precision for AMP inside the compress function itself, because the loudness function gripes when using a float16 (non-power of 2 lengths) or bfloat16 (something about views for bfloat16) 2024-08-06 15:08:37 -05:00
mrq
b6ba2cc8e7 tweaked vall_e.emb.process to instead process audio one file at a time instead of all the files for a given speaker to avoid OOMing on less-memory-filled systems with --low-memory 2024-08-06 14:24:40 -05:00
mrq
9710b06b74 tweaks and things 2024-08-06 08:17:25 -05:00
mrq
8bac8fe902 oops 2024-08-05 20:38:29 -05:00
mrq
134dac8c2b re-adapted process_libritts.py to a 'better' way (better because it processed without needing to shuffle a bunch of things and adapt to cope or something) 2024-08-05 20:34:58 -05:00
mrq
3f73fcca29 oops 2024-08-05 20:12:13 -05:00
mrq
597441e48b moved transcribe and process dataset scripts to vall_e/emb within the module itself, argparse-ified transcription script 2024-08-05 19:40:50 -05:00
mrq
7cdfa3dc0c updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup 2024-08-05 15:59:25 -05:00
mrq
debcc93e7e add adapted MixtralAttention for when I make a bad decision to actually train a MoE 2024-08-04 22:03:22 -05:00
mrq
10aaf840e7 added export option to convert Llama to MixtralMoE for another dumb experiment 2024-08-04 20:25:06 -05:00
mrq
3a65cc4b22 fix issue with sft and shared tensors... 2024-08-04 19:56:21 -05:00
mrq
23f3b56fda oops 2024-08-04 08:18:57 -05:00
mrq
d19f93a2c0 documentation update 2024-08-04 00:14:49 -05:00
mrq
2cb465018b implicitly load either normal pickled weights or safetensors on loading the model 2024-08-03 23:34:18 -05:00
mrq
c09133d00f added safetensors support (with metadata) and feed whatever torch.load/torch.save into it 2024-08-03 23:15:20 -05:00
mrq
6a733eb2ed changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful 2024-08-03 22:10:21 -05:00
mrq
ab673e0426 add cap for NAR-len training, to avoid any weird cases in early training where it'll just mess up and generate long lengths 2024-08-03 21:00:32 -05:00
mrq
4d2b88b164 throw exception if training, but no model is set to train (because i ran into this wondering what the hell was happening) 2024-08-03 20:51:23 -05:00
mrq
d0a5c7eca2 more coping with the NAR len 2024-08-03 20:23:36 -05:00
mrq
11fa3da665 some cleanup, fixed the wrapper attention to explicitly use other sdpa backends 2024-08-03 19:51:00 -05:00
mrq
9564ecda43 wrapper attention class for other sdpa backends + xformers seems to have broke... 2024-08-03 15:12:11 -05:00
mrq
9e1989be1b tweaked initial NAR pass's initial token embeddings to use a different value, or osmething 2024-08-03 09:01:37 -05:00
mrq
26f74c5739 somehow fixed non-unified position IDs for the NAR-len 2024-08-03 08:43:42 -05:00
mrq
66407e5bdb tweaks for the NAR-len model, maybe 2024-08-03 08:40:39 -05:00
mrq
97c5241bef fixes, throw an exception when using NAR only model with non-unified position IDs, since for some reason it outputs garbage for the NAR 2024-08-02 22:25:49 -05:00
mrq
4456d3172b that's what I get for testing without hdf5 on my previous machine.... 2024-08-02 20:44:01 -05:00
mrq
7a77978096 oversight with using resize_modules 2024-08-02 20:28:49 -05:00
mrq
808a79ebaf oops 2024-08-01 22:56:04 -05:00