Commit Graph

1048 Commits

Author SHA1 Message Date
James Betker
29534180b2 w2v fine tuner 2022-02-12 20:00:59 -07:00
James Betker
3252972057 ctc_code_gen mods 2022-02-12 19:59:54 -07:00
James Betker
302ac8652d Undo mask during training 2022-02-11 09:35:12 -07:00
James Betker
618a20412a new rev of ctc_code_gen with surrogate LM loss 2022-02-10 23:09:57 -07:00
James Betker
820a29f81e ctc code gen mods 2022-02-10 09:44:01 -07:00
James Betker
ac9417b956 ctc_code_gen: mask out all padding tokens 2022-02-09 17:26:30 -07:00
James Betker
ddb77ef502 ctc_code_gen: use a mean() on the ConditioningEncoder 2022-02-09 14:26:44 -07:00
James Betker
9e9ae328f2 mild updates 2022-02-08 23:51:17 -07:00
James Betker
ff35d13b99 Use non-uniform noise in diffusion_tts6 2022-02-08 07:27:41 -07:00
James Betker
34fbb78671 Straight CtcCodeGenerator as an encoder 2022-02-07 15:46:46 -07:00
James Betker
65a546c4d7 Fix for tts6 2022-02-05 16:00:14 -07:00
James Betker
5ae816bead ctc gen checkin 2022-02-05 15:59:53 -07:00
James Betker
bb3d1ab03d More cleanup 2022-02-04 11:06:17 -07:00
James Betker
5cc342de66 Clean up 2022-02-04 11:00:42 -07:00
James Betker
8fb147e8ab add an autoregressive ctc code generator 2022-02-04 11:00:15 -07:00
James Betker
7f4fc55344 Update SR model 2022-02-03 21:42:53 -07:00
James Betker
bc506d4bcd Mods to unet_diffusion_tts6 to support super resolution mode 2022-02-03 19:59:39 -07:00
James Betker
4249681c4b Mods to support a autoregressive CTC code generator 2022-02-03 19:58:54 -07:00
James Betker
8132766d38 tts6 2022-01-31 20:15:06 -07:00
James Betker
fbea6e8eac Adjustments to diffusion networks 2022-01-30 16:14:06 -07:00
James Betker
e58dab14c3 new diffusion updates from testing 2022-01-29 11:01:01 -07:00
James Betker
935a4e853e get rid of nil tokens in <2> 2022-01-27 22:45:57 -07:00
James Betker
a77d376ad2 rename unet diffusion tts and add 3 2022-01-27 19:56:24 -07:00
James Betker
8c255811ad more fixes 2022-01-25 17:57:16 -07:00
James Betker
0f3ca28e39 Allow diffusion model to be trained with masking tokens 2022-01-25 14:26:21 -07:00
James Betker
d18aec793a Revert "(re) attempt diffusion checkpointing logic"
This reverts commit b22eec8fe3.
2022-01-22 09:14:50 -07:00
James Betker
b22eec8fe3 (re) attempt diffusion checkpointing logic 2022-01-22 08:34:40 -07:00
James Betker
8f48848f91 misc 2022-01-22 08:23:29 -07:00
James Betker
851070075a text<->cond clip
I need that universal clip..
2022-01-22 08:23:14 -07:00
James Betker
8ada52ccdc Update LR layers to checkpoint better 2022-01-22 08:22:57 -07:00
James Betker
8e2439f50d Decrease resolution requirements to 2048 2022-01-20 11:27:49 -07:00
James Betker
4af8525dc3 Adjust diffusion vocoder to allow training individual levels 2022-01-19 13:37:59 -07:00
James Betker
ac13bfefe8 use_diffuse_tts 2022-01-19 00:35:24 -07:00
James Betker
bcd8cc51e1 Enable collated data for diffusion purposes 2022-01-19 00:35:08 -07:00
James Betker
dc9cd8c206 Update use_gpt_tts to be usable with unified_voice2 2022-01-18 21:14:17 -07:00
James Betker
7b4544b83a Add an experimental unet_diffusion_tts to perform experiments on 2022-01-18 08:38:24 -07:00
James Betker
37e4e737b5 a few fixes 2022-01-16 15:17:17 -07:00
James Betker
9100e7fa9b Add a diffusion network that takes aligned text instead of MELs 2022-01-15 17:28:02 -07:00
James Betker
009a1e8404 Add a new diffusion_vocoder that should be trainable faster
This new one has a "cheating" top layer, that does not feed down into the unet encoder,
but does consume the outputs of the unet. This cheater only operates on half of the input,
while the rest of the unet operates on the full input. This limits the dimensionality of this last
layer, on the assumption that these last layers consume by far the most computation and memory,
but do not require the full input context.

Losses are only computed on half of the aggregate input.
2022-01-11 17:26:07 -07:00
James Betker
91f28580e2 fix unified_voice 2022-01-10 16:17:31 -07:00
James Betker
136744dc1d Fixes 2022-01-10 14:32:04 -07:00
James Betker
ee3dfac2ae unified_voice2: decouple positional embeddings and token embeddings from underlying gpt model 2022-01-10 08:14:41 -07:00
James Betker
f503d8d96b Partially implement performers in transformer_builders 2022-01-09 22:35:03 -07:00
James Betker
ec456b6733 Revert unified_voice back to beginning
I'll be doing my work within unified_voice2
2022-01-09 22:34:30 -07:00
James Betker
432073c5ca Make performer code functional 2022-01-09 22:32:50 -07:00
James Betker
f474a7ac65 unified_voice2 2022-01-09 22:32:34 -07:00
James Betker
c075fe72e2 import performer repo 2022-01-09 22:10:07 -07:00
James Betker
7de3874f15 Make dalle transformer checkpointable 2022-01-09 19:14:35 -07:00
James Betker
70b17da193 Alter unified_voice to use extensible transformer (still WIP) 2022-01-08 22:18:25 -07:00
James Betker
15d9517e26 Allow bi-directional clipping 2022-01-08 22:18:04 -07:00
James Betker
8bade38180 Add generic CLIP model based off of x_clip 2022-01-08 19:08:01 -07:00
James Betker
438dd9ed33 fix text-voice-clip bug 2022-01-08 08:55:00 -07:00
James Betker
34774f9948 unified_voice: begin decoupling from HF GPT
I'd like to try some different (newer) transformer variants. The way to get
there is softly decoupling the transformer portion of this architecture
from GPT. This actually should be fairly easy.
2022-01-07 22:51:24 -07:00
James Betker
68090ac3e9 Finish up the text->voice clip model 2022-01-07 22:28:45 -07:00
James Betker
65ffe38fce misc 2022-01-06 22:16:17 -07:00
James Betker
e7a705fe6e Make gpt_asr_hf2 more efficient at inference 2022-01-06 10:27:10 -07:00
James Betker
525addffab Unified: automatically clip inputs according to specified max length to improve inference time 2022-01-06 10:13:45 -07:00
James Betker
61cd351b71 update unified 2022-01-06 09:48:11 -07:00
James Betker
10fd1110be Fix (?) use_gpt_tts for unified_voice 2022-01-05 20:09:31 -07:00
James Betker
3c4301f085 Remove dvae_arch_playground 2022-01-05 17:06:45 -07:00
James Betker
a63a17e48f Remove deepspeech models 2022-01-05 17:05:13 -07:00
James Betker
c584ba05ee unified_voice improvements
- Rename max_symbols_per_phrase to max_text_tokens
- Remove max_total_tokens (no longer necessary)
- Fix integration with MelEncoder
2022-01-05 17:03:53 -07:00
James Betker
38aba6f88d Another dumdum fix 2022-01-04 15:18:25 -07:00
James Betker
963c6072bb Add mel_encoder and solo embeddings to unified_voice 2022-01-04 15:15:58 -07:00
James Betker
2165124f19 Add GPT documentation 2022-01-01 21:00:07 -07:00
James Betker
2635412291 doh 2022-01-01 14:29:59 -07:00
James Betker
d4a6298658 more debugging 2022-01-01 14:25:27 -07:00
James Betker
d8111e0477 misc 2022-01-01 14:05:33 -07:00
James Betker
dc535b5358 better bounds 2022-01-01 14:05:22 -07:00
James Betker
fe9ea4e01a auto-fix text_inputs too big 2022-01-01 13:25:47 -07:00
James Betker
bbacffb790 dataset improvements and fix to unified_voice_Bilevel 2022-01-01 00:16:30 -07:00
James Betker
eda753e776 Allow conditioning shuffling to be disabled 2021-12-31 23:32:08 -07:00
James Betker
9aa06542cd Further reduce the complexity of the MEL encoder in GptAsrHf 2021-12-30 09:10:40 -07:00
James Betker
5ae7e0d9b0 Fix gapping bug in voice2voice clip 2021-12-29 14:44:46 -07:00
James Betker
b12f47b36d Add some noise to voice_voice_clip 2021-12-29 13:56:30 -07:00
James Betker
b24a51f0aa Check in speech2speech CLIP inference tool 2021-12-29 00:19:44 -07:00
James Betker
c1bef01dfa GptAsrHf2 checkin 2021-12-28 20:48:38 -07:00
James Betker
07c2b9907c Add voice2voice clip model 2021-12-28 16:18:12 -07:00
James Betker
a9ee5b624f Simplify and conform gpt_asr_hf2 2021-12-28 11:54:33 -07:00
James Betker
a5b4bee719 Improve asr_eval 2021-12-28 11:45:15 -07:00
James Betker
312f631c5b gpt_asr_hf2: remove dual positional embeddings 2021-12-28 10:57:45 -07:00
James Betker
a12042ea99 Allow multi-embeddings to be disabled 2021-12-28 09:00:53 -07:00
James Betker
a698d3f525 unified_voice: introduce paired embeddings 2021-12-26 15:33:05 -07:00
James Betker
6996dfd9d5 asr_hf2: add independent position embedders 2021-12-26 15:17:24 -07:00
James Betker
5b5cbc057c Work checkpoint for gpt asr hf2 2021-12-26 10:29:12 -07:00
James Betker
cd89e6b42e Initialize our embeddings the same way GPT-2 initializes theirs. 2021-12-26 00:20:30 -07:00
James Betker
8d01f7685c Get rid of absolute positional embeddings in unifiedvoice 2021-12-26 00:10:24 -07:00
James Betker
6700f8851d moar verbosity 2021-12-25 23:23:21 -07:00
James Betker
8acf3b3097 Better dimensional asserting 2021-12-25 23:18:25 -07:00
James Betker
e959541494 Add position embeddings back into unified_voice
I think this may be the solution behind the days problems.
2021-12-25 23:10:56 -07:00
James Betker
ab9cafa572 Make tokenization configs more configurable 2021-12-25 12:17:50 -07:00
James Betker
52410fd9d9 256-bpe tokenizer 2021-12-25 08:52:08 -07:00
James Betker
8e26400ce2 Add inference for unified gpt 2021-12-24 13:27:06 -07:00
James Betker
8b19c37409 UnifiedGptVoice! 2021-12-23 15:20:26 -07:00
James Betker
e55d949855 GrandConjoinedDataset 2021-12-23 14:32:33 -07:00
James Betker
c737632eae Train and use a bespoke tokenizer 2021-12-22 15:06:14 -07:00
James Betker
66bc60aeff Re-add start_text_token 2021-12-22 14:10:35 -07:00
James Betker
a9629f7022 Try out using the GPT tokenizer rather than nv_tacotron
This results in a significant compression of the text domain, I'm curious what the
effect on speech quality will be.
2021-12-22 14:03:18 -07:00
James Betker
7ae7d423af VoiceCLIP model 2021-12-22 13:44:11 -07:00
James Betker
09f7f3e615 Remove obsolete lucidrains DALLE stuff, re-create it in a dedicated folder 2021-12-22 13:44:02 -07:00