vall-e/vall_e/models/base.py

2182 lines
87 KiB
Python
Raw Normal View History

2024-06-09 01:30:15 +00:00
"""
Core model for handling all VALL-E tasks.
This should handle all the "low" level things such as:
* parsing inputs to sequences
* converting sequences to embeddings
* forward pass
* processing loss and returning logits
Additional functionality (preparing inputs, generating full audio) should be delegated to classes that inheret the base model
"""
2023-08-02 21:53:35 +00:00
import math
import torch
import torch.nn.functional as F
import random
import numpy as np
import re
2023-08-02 21:53:35 +00:00
from time import perf_counter
from collections import namedtuple
from typing import Literal, overload, Optional, Tuple
2023-08-02 21:53:35 +00:00
from functools import partial
from einops import rearrange
from torch import Tensor, einsum, nn
from torch.nn import Embedding
2023-08-02 21:53:35 +00:00
from torch.distributions import Categorical
from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
2024-06-06 01:30:43 +00:00
from .arch import *
from ..utils import wrapper as ml, clamp
2024-07-30 00:15:07 +00:00
from ..samplers import *
from ..emb.qnt import encode_as_embedding
# yuck, kind of needed
from ..data import get_task_symmap
# these seem more elegant than a dict
2024-12-07 05:53:46 +00:00
Logits = namedtuple('Logits', ['logits', 'state', 'inputs', 'loss', 'attentions', 'hidden_states', 'exited_layer'])
Sampled = namedtuple('Sampled', ['ids', 'logits', 'scores', 'entropy'])
LossStats = namedtuple('LossStats', ['loss', 'stats'])
"""
from ..utils.pattern import DelayedPatternProvider, VALLEPattern
"""
summed_embeddings_task = [ "stt" ]
special_tasks = [ "len", "stt" ]
non_tokened_names = ["task", "dropout_mask", "classifier_level"]
task_outputs = {
"tts": "resp",
"stt": "text",
"len": "len",
}
2024-12-22 04:52:10 +00:00
# yuck
def _get_offsets():
return {
2024-12-22 21:05:45 +00:00
"text": (0, 256),
"quant_level": (256, 264),
"lang": (264, 270),
"task": (270, 279),
"len": (279, 290),
"tone": (290, 291),
"sep": (291, 292),
"prom|0": (292, 1316),
"prom|1": (1316, 2340),
"prom|2": (2340, 3364),
"prom|3": (3364, 4388),
"prom|4": (4388, 5412),
"prom|5": (5412, 6436),
"prom|6": (6436, 7460),
"prom|7": (7460, 8484),
"resps|AR:0:0": (8484, 9509),
"resps|NAR:0:1": (9509, 10533),
"resps|NAR:1:2": (10533, 11557),
"resps|NAR:2:3": (11557, 12581),
"resps|NAR:3:4": (12581, 13605),
"resps|NAR:4:5": (13605, 14629),
"resps|NAR:5:6": (14629, 15653),
"resps|NAR:6:7": (15653, 16677),
"resps|NAR:0:0": (16677, 17702),
2024-12-22 04:52:10 +00:00
}
def _dropout_mask( input, p=None ):
# cosine scheduling
if p is None:
t = random.random()
p = math.cos(t * math.pi * 0.5)
2024-11-10 00:04:59 +00:00
seq = [ random.random() < p for _ in range( input.shape[0] ) ]
mask = torch.tensor( seq, dtype=torch.bool, device=input.device )
return mask
2024-11-07 17:32:11 +00:00
2023-08-02 21:53:35 +00:00
def _create_mask(l, device):
"""1 is valid region and 0 is invalid."""
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
return (seq < stop).float() # (b t)
def _join(x: tuple[Tensor], sep: Tensor):
"""
Args:
x: (k t d)
sep: (d)
"""
ret = x[0]
for i in range(1, len(x)):
ret = torch.cat((ret, sep[None], x[i]), dim=0)
return ret
def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
"""
Args:
x_list: [(t d)]
Returns:
x: (? ? ?)
m: (? ? ?), same as x
"""
l = list(map(len, x_list))
x = rearrange(pad_sequence(x_list), pattern)
m = _create_mask(l, x_list[0].device)
"""
2023-08-02 21:53:35 +00:00
m = m.t().unsqueeze(-1) # (t b 1)
m = rearrange(m, pattern)
"""
m = m.to(x).int()
2023-08-02 21:53:35 +00:00
return x, m
def _interleave_sequence_reshape( input: list[torch.Tensor], dim=-1 ):
shape = (input[0].shape[0] * len(input), input[0].shape[dim] )
return torch.concat( [ i.t() for i in input ] ).t().reshape( shape )
def _interleave_sequence_flatten( input: list[torch.Tensor] ):
return torch.concat( [ i.t() for i in input ] ).t().flatten()
# automagically parses a batch-list and returns it as a list
"""
2023-08-02 21:53:35 +00:00
class Embedding(nn.Embedding):
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
if len(x_list) == 0:
return []
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
"""
2023-08-02 21:53:35 +00:00
# Deprecated implementation
class MultiEmbedding(nn.Module):
def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False):
2023-09-16 05:26:13 +00:00
super().__init__()
2023-09-08 20:36:26 +00:00
self.monolithic = monolithic
2023-08-02 21:53:35 +00:00
self.max_n_levels = max_n_levels
self.n_tokens = n_tokens
2023-09-08 20:36:26 +00:00
self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim))
2023-08-02 21:53:35 +00:00
2024-08-04 01:23:36 +00:00
# to-do: select quant level from given quant_levels tensor if given (i.e. through the resps_emb)
2023-09-07 22:08:38 +00:00
# I imagine this is an oversight in the NAR.
def forward(self, x_list: list[Tensor], quant_level: int | list[int] | Tensor | None = None) -> list[Tensor]:
2023-08-02 21:53:35 +00:00
if len(x_list) == 0:
return []
2023-09-08 20:36:26 +00:00
# this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR
2024-08-04 01:23:36 +00:00
# the NAR cannot share RVQ-bin level 0 with the AR for the resps_emb
if self.monolithic:
w = self.weight[:1] if quant_level is None or quant_level == 0 else self.weight[1:]
else:
w = self.weight
2023-08-02 21:53:35 +00:00
padded_x_list = []
2023-08-02 21:53:35 +00:00
2023-09-08 20:36:26 +00:00
for i, xi in enumerate(x_list):
2023-08-02 21:53:35 +00:00
xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k
wi = w.shape[0] - xi.shape[1]
xi = F.pad(xi, (0, 0, 0, wi)) # t l k
2023-08-02 21:53:35 +00:00
padded_x_list.append(xi.to(w))
x = torch.cat(padded_x_list) # n l k
x = einsum("l k d, n l k -> n d", w, x)
2023-08-02 21:53:35 +00:00
x_list = x.split([*map(len, x_list)])
return x_list
# Embedding that sums each RVQ-bin level within a given input acoustic prompt
2024-06-09 01:30:15 +00:00
# _Old, to preserve compat with previous models.
class AudioEmbedding_Old(nn.Module):
def __init__(
self,
l_tokens: int, # list of number of tokens (needed because AR resps includes stop token)
token_dim: int, # dimensionality of the embedding
levels: int | None = None, # number of RVQ-bins (I don't remember the specifics)
):
2023-09-07 14:14:03 +00:00
super().__init__()
# array of embeddings
# proms are [0, resp_levels]
# resp are split to where [0] is for the AR, and [1:] are reserved for NAR
self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens])
# weight influencer for the influence for each level (desu this should be really useless because the weights in the embedding themselves should factor this)
self.weight = nn.ParameterList([nn.Parameter( torch.tensor([1]) ) for i in range(levels)]) if levels is not None else None
2024-06-09 01:30:15 +00:00
def forward(self, xi: Tensor, quant_level: Tensor | None = None ) -> Tensor:
# prom
2024-06-09 01:30:15 +00:00
if quant_level is None and xi.shape[-1] > 1:
2024-06-07 00:41:26 +00:00
x = sum( [ self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] )
2024-06-09 01:30:15 +00:00
# prom / AR resp
elif quant_level is None or quant_level == 0:
x = self.embeddings[0]( xi if xi.dim() == 1 else xi[:, 0] )
# NAR resp
else:
2024-06-07 00:41:26 +00:00
x = sum( [ self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] )
return x
2024-06-09 01:30:15 +00:00
# Embedding that sums each RVQ-bin level within a given input acoustic prompt
# Mostly to handle some oversights and errors during testing
class AudioEmbedding(nn.Module):
def __init__(
self,
l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token)
token_dim: int, # dimensionality of the embedding
sums: bool = True, # whether to sum all previous layers of embeddings to factor in other RVQ bin levels (I do not know which way is better)
l_names: list[str] = [], # names to map to indices
):
super().__init__()
# array of embeddings
# proms are [0, resp_levels]
# resp are split to where [0] is for the AR, and [1:] are reserved for NAR
self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens])
# further experimentation is needed to see if this actually is useful
self.sums = sums
#
self.names = l_names
def forward(self, xi: Tensor, offset: int | None = None, quant_level: int | None = None, name: str | None = None, sums = None ) -> Tensor:
2024-09-08 03:13:49 +00:00
if sums is None:
sums = self.sums
if quant_level is None:
quant_level = 0 if xi.dim() == 1 else xi.shape[-1] - 1
2024-09-08 03:13:49 +00:00
# handle mapping from name
if name in self.names:
offset = self.names.index( name )
offset -= quant_level # offset by quant level since it'll iterate up that many levels
2024-06-07 00:41:26 +00:00
if self.sums and quant_level > 0:
x = sum( [ self.embeddings[k + offset]( xi[:, k] ) for k in range( quant_level ) ] )
else:
k = quant_level
2024-06-07 00:41:26 +00:00
x = self.embeddings[k + offset]( xi if xi.dim() == 1 else xi[:, k] )
return x
2024-11-09 04:46:26 +00:00
# time-step embedding
# for the NAR-len, since it probably most likely requires encoding the timestep
class TimeEmbedding(nn.Module):
def __init__(
self,
d_model
):
super().__init__()
self.emb = SinusoidalEmbedding(d_model)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model*4),
nn.SiLU(),
nn.Linear(d_model*4, d_model),
)
def forward( self, t ):
t = self.emb(t)
t = self.mlp(t)
return t
# per-level classification
# it might actually be "better" in the long run to only have one output head like a traditional LM, and just de-stitch it here instead of doing modulus math and whatever like the HF/experimental impl
class Classifiers(nn.Module):
def __init__(
self,
l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token)
token_dim: int, # dimensionality of the embedding
2024-12-20 23:13:37 +00:00
l_names: list[str] | None = None, # list of names to map to each classifier,
bias: bool = True,
):
super().__init__()
2024-12-20 23:13:37 +00:00
self.proj = nn.ModuleList([nn.Linear(token_dim, n_tokens, bias=bias) for n_tokens in l_tokens])
self.names = l_names
def indices(
self,
names
):
if isinstance( names[-1], int ):
return names
return [ self.names.index(name) for name in names ]
def forward(self, xi: Tensor, levels: list[int] | None = None, names: list[str] | None = None, stack = False ) -> Tensor:
dtype = xi.dtype
device = xi.device
if levels and isinstance( levels[-1], str ):
names = levels
levels = []
# map names to levels
if names and not levels:
levels = [ self.names.index(name) for name in names ]
xi = [ self.proj[l]( x ) for x, l in zip(xi, levels) ]
if not stack:
return xi
# pad if needed
# to-do: validate that this causes ZERO issues
# addendum: this does cause problems
max_size = max([ x.shape[-1] for x in xi ])
xi = [
#x if l == 0 else
x if x.shape[-1] == max_size else
2024-09-06 16:41:41 +00:00
torch.cat( [x, torch.full( (x.shape[0], max_size - x.shape[-1]), -float("inf"), device=device, dtype=dtype) ], dim=-1 )
for x, l in zip(xi, levels)
]
return torch.stack( xi )
class Metrics(nn.Module):
def __init__(
self,
l_tokens: int | list[int],
top_k = 10,
average="micro",
multidim_average="global",
ignore_index = -100
):
super().__init__()
self.accuracy = nn.ModuleList([ MulticlassAccuracy(
n_tokens,
top_k=top_k,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
) for n_tokens in l_tokens ])
self.precision = nn.ModuleList([ MulticlassPrecision(
n_tokens,
top_k=top_k,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
) for n_tokens in l_tokens ])
def calc_accuracy( self, inputs, targets, classifier_levels ):
return sum( [ self.accuracy[l]( input[:, :self.accuracy[l].num_classes], target ) for target, input, l in zip( targets, inputs, classifier_levels ) ] ) / len( inputs )
def calc_precision( self, inputs, targets, classifier_levels ):
return sum( [ self.precision[l]( input[:, :self.precision[l].num_classes], target ) for target, input, l in zip( targets, inputs, classifier_levels ) ] ) / len( inputs )
def __call__(self, *args, **kwargs):
return dict(
acc=self.calc_accuracy(*args, **kwargs),
)
2023-08-02 21:53:35 +00:00
class Base(nn.Module):
def loss_factor(self, k):
if self.config is None:
return 1.0
return self.config.loss_factor(k)
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
# these probably need to live in an interleaved model, as pattern-ing is targeted for a sole AR model
"""
def codes_to_pattern(self, codes):
# expand if not batched
if codes.dim() == 2:
codes = codes.unsqueeze(0)
# [batch, timestep, rvq level] (B, T, K) => [batch, rvq level, timestep] (B, K, T)
codes = codes.permute(0, 2, 1)
B, K, T = codes.shape
# map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens
pattern = self.pattern_provider.get_pattern(T)
sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence(
codes.contiguous(), self.stop_token, keep_only_valid_steps=False,
)
# (B, K, T) => (B, T, K)
return sequence_codes.permute(0, 2, 1)
def logits_from_pattern(self, logits, pattern):
logits = logits.permute(0, 3, 1, 2) # [B, card, K, S]
logits, logits_indexes, logits_mask = pattern.revert_pattern_logits(
logits, float('nan'), keep_only_valid_steps=False
)
logits = logits.permute(0, 2, 3, 1) # [B, K, T, card]
logits_mask = logits_mask[None, :, :].expand(B, -1, -1) # [K, T] -> [B, K, T]
return logits, logits_mask
"""
2023-08-02 21:53:35 +00:00
def __init__(
self,
n_text_tokens: int = 256,
n_audio_tokens: int = 1024,
2023-08-02 21:53:35 +00:00
d_model: int = 512,
n_heads: int = 8,
n_layers: int = 12,
p_dropout: float = 0.1,
n_experts: int = 1,
l_padding: int = 0,
training = True,
attention = None,
config = None,
2023-08-02 21:53:35 +00:00
):
super().__init__()
self.training = training
self.teaching = False
self.config = config
self.n_text_tokens = n_text_tokens
self.n_audio_tokens = n_audio_tokens
2023-08-02 21:53:35 +00:00
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.n_experts = n_experts
self.l_padding = l_padding
2023-08-02 21:53:35 +00:00
self.ignore_index = -100
self.n_resp_levels = self.config.resp_levels if self.config else n_resp_levels
self.n_max_levels = self.config.max_levels if self.config else n_resp_levels
self.capabilities = self.config.capabilities if self.config else ["ar", "nar"]
self.gradient_checkpointing = self.config.gradient_checkpointing if self.config is not None else True
self.stop_token = self.n_audio_tokens # id 1024
self.causal = "ar" in self.capabilities or "len" in self.capabilities
self.version = self.config.version if self.config is not None else 5
2024-11-16 21:49:06 +00:00
self.causal_size = self.config.experimental.causal_size if self.config is not None else (1 if self.causal else 0)
2024-06-30 16:00:12 +00:00
self.arch_type = self.config.arch_type if self.config is not None else "llama"
2024-06-12 04:59:28 +00:00
# check if requested arch is unavailable
if self.arch_type in ERROR_ARCHES:
raise ERROR_ARCHES[self.arch_type]
if not attention:
attention = self.config.attention if self.config is not None else "auto"
# crunge
if self.config is not None and config.teacher:
self.teaching = True
self.training = False
attention_backend = attention
2024-08-03 13:40:39 +00:00
audio_embedding_sums = self.config.experimental.audio_embedding_sums if self.config is not None else False
split_classifiers = self.config.experimental.split_classifiers if self.config is not None else False
tie_classifier_to_embedding = self.config.experimental.tie_classifier_to_embedding if self.config is not None else False
audio_embedding_mode = self.config.experimental.audio_embedding_mode if self.config is not None else ""
unified_position_ids = self.config.experimental.unified_position_ids if self.config is not None else True
interleave = self.config.experimental.interleave if self.config is not None else False
noncausal_masks = self.config.experimental.noncausal_masks if self.config is not None else False
2024-12-20 23:13:37 +00:00
classifiers_bias = self.config.experimental.classifiers_bias if self.config is not None else False
2024-10-31 18:24:48 +00:00
masking_ratio = self.config.experimental.masking_ratio if self.config is not None else False
ignore_inputs_for_loss = self.config.experimental.ignore_inputs_for_loss if self.config is not None else False
layerskip = self.config.experimental.layerskip if self.config is not None else False
2024-10-31 18:24:48 +00:00
layerskip_r = self.config.experimental.layerskip_r if self.config is not None else 2
layerskip_p_max = self.config.experimental.layerskip_p_max if self.config is not None else 0.1
layerskip_e_scale = self.config.experimental.layerskip_e_scale if self.config is not None else 0.1
n_tasks = self.config.tasks if self.config is not None else 8
n_langs = self.config.langs if self.config is not None else 2
n_tones = self.config.tones if self.config is not None else 1
# pure AR
if "nar" not in self.capabilities:
n_resp_tokens = n_audio_tokens + 1
l_tokens = [n_resp_tokens] * self.n_resp_levels
resp_l_names = [f'AR:{i}:{i}' for i in range( self.n_resp_levels )]
classifier_l_tokens = [n_resp_tokens] * self.n_resp_levels
# NAR-len model
elif "len" in self.capabilities:
# +1 to include the stop or mask token
n_resp_tokens = n_audio_tokens + ( 1 if self.causal_size > 0 else 0 )
if "ar" in self.capabilities:
l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) + [n_resp_tokens]
classifier_l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) + [n_resp_tokens - 1]
resp_l_names = ['AR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )] + ['NAR:0:0']
else:
l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1)
classifier_l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1)
resp_l_names = ['NAR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )]
# AR+NAR model
2024-11-07 17:32:11 +00:00
else:
# +1 to include the stop or mask token
n_resp_tokens = n_audio_tokens + ( 1 if self.causal_size > 0 else 0 )
l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1)
resp_l_names = ['AR:0:0'] + [f'NAR:{i}:{i+1}' for i in range( self.n_resp_levels - 1 )]
classifier_l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1)
classifier_l_tokens += [ n_text_tokens ]
2024-11-15 04:18:33 +00:00
classifier_l_names = resp_l_names + [ "stt" ]
2024-11-15 04:18:33 +00:00
if "len" in self.capabilities:
classifier_l_tokens += [ 11 ]
classifier_l_names += ["len"]
2024-12-22 22:15:24 +00:00
n_vocab = 17702 if not split_classifiers else n_resp_tokens + 1
2024-12-22 04:52:10 +00:00
self.n_vocab = n_vocab
self.unified_position_ids = unified_position_ids
self.interleave = interleave
self.layerskip = layerskip
2024-11-10 00:12:54 +00:00
self.inject_timestep_embedding = False # results in bad output
self.masking_ratio = masking_ratio
self.ignore_inputs_for_loss = ignore_inputs_for_loss
self.noncausal_masks = noncausal_masks
# use internal attention mechanism for now because I dont have a better way to handle mixed causal/noncausal masks for other attention backends
2024-11-22 22:45:40 +00:00
"""
if noncausal_masks:
attention_backend = "default"
2024-11-22 22:45:40 +00:00
"""
self.text_emb = Embedding(n_text_tokens, d_model)
self.langs_emb = None
self.tones_emb = None
self.tasks_emb = None
self.rvq_l_emb = None
self.len_emb = None
# it would be nicer for these to be a token or live inside an embedding
self.sep = nn.Parameter(torch.randn(d_model))
2024-11-07 15:10:18 +00:00
self.dropout_token = nn.Parameter(torch.randn(d_model))
if self.version == 1: # legacy
n_audio_tokens += (n_tasks - 1) # old models have the task tokens in the prom
self.proms_emb = MultiEmbedding(self.n_resp_levels, n_audio_tokens, d_model)
self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic)
elif self.version < 5:
# [1024] * 8
self.proms_emb = AudioEmbedding_Old(
[n_audio_tokens] * self.n_resp_levels, d_model,
levels=self.n_resp_levels if self.version > 3 else None,
)
# [1024 + STOP] + [1024] * 8
self.resps_emb = AudioEmbedding_Old(
2024-06-12 04:59:28 +00:00
l_tokens, d_model,
levels=self.n_resp_levels if self.version > 3 else None,
)
else:
self.proms_emb = AudioEmbedding(
[n_audio_tokens] * self.n_resp_levels, d_model,
sums=audio_embedding_sums == "prom" or audio_embedding_sums == True,
)
self.resps_emb = AudioEmbedding(
2024-06-12 04:59:28 +00:00
l_tokens, d_model,
sums=audio_embedding_sums == "resp" or audio_embedding_sums == True,
l_names=resp_l_names,
)
if self.version >= 3:
self.langs_emb = Embedding(n_langs, d_model) if n_langs > 0 else None
self.tasks_emb = Embedding(n_tasks, d_model) if n_tasks > 0 else None
2024-12-20 01:25:27 +00:00
self.capabilities += ["lang"]
# never actually got added... I kept forgetting to classify all my audio for speaker's tone
if self.version >= 4:
self.tones_emb = Embedding(n_tones, d_model) if n_tones > 0 else None
2023-08-02 21:53:35 +00:00
# mamba requires this if a model does both AR and NAR tasks
# this *might* help for AR and NAR tasks since we explicitly specify the current RVQ level for a sequence, rather than having it "encoded" in the embeddings
# this ***might*** let me also unify the proms_emb and resps_embedding
if self.version >= 5:
2024-11-07 15:10:18 +00:00
# "len" RVQ level-0 gets an additional token
2024-11-10 18:19:48 +00:00
self.rvq_l_emb = Embedding(self.n_resp_levels, d_model)
# experimental NAR-only mode
2024-11-10 18:19:48 +00:00
self.len_emb = Embedding(11, d_model)
2024-11-22 05:14:52 +00:00
self.time_emb = None # TimeEmbedding(d_model) # if not masking_ratio else None
if attention_backend == "auto":
attention_backend = "sdpa"
"""
2024-08-09 00:38:55 +00:00
if AVAILABLE_ATTENTIONS:
attention_backend = AVAILABLE_ATTENTIONS[0]
else:
attention_backend = "default"
"""
hf_attention = attention_backend
HF_ATTENTIONS = ["eager", "sdpa", "flash_attention_2"]
if attention_backend not in HF_ATTENTIONS:
hf_attention = None
if attention_backend not in AVAILABLE_ATTENTIONS:
raise ValueError(f"Requesting attention `{attention_backend}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
2024-11-07 15:10:18 +00:00
# override any requested padding size
if attention_backend == "flash_attn_v100":
self.l_padding = 32
elif attention_backend == "fused_attn":
self.l_padding = 128
2023-08-02 21:53:35 +00:00
if self.arch_type == "transformer":
self.sin_emb = SinusoidalEmbedding(d_model)
self.blocks = nn.ModuleList([TransformerBlock(
d_model=d_model,
n_heads=n_heads,
p_dropout=p_dropout if training else 0.0,
2023-08-19 01:58:07 +00:00
causal=self.causal,
2024-06-30 16:00:12 +00:00
norm_type="ln", # adaln
2023-08-02 21:53:35 +00:00
n_levels=self.n_resp_levels,
) for _ in range(n_layers) ])
elif self.arch_type in ["mistral", "mixtral"]:
if n_experts <= 1:
self.model = MistralModel(MistralConfig(
2024-12-22 04:52:10 +00:00
vocab_size=n_vocab,
hidden_size=d_model,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
attn_implementation=hf_attention,
2024-06-04 02:28:49 +00:00
#gradient_checkpointing=self.gradient_checkpointing,
))
else:
self.model = MixtralModel(MixtralConfig(
vocab_size =n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads,
sliding_window=75 * 12, # 12 second context window
output_router_logits=training,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
num_local_experts=n_experts,
num_experts_per_tok=min(2, n_experts),
attn_implementation=hf_attention,
2024-06-04 02:28:49 +00:00
#gradient_checkpointing=self.gradient_checkpointing,
))
if attention_backend not in HF_ATTENTIONS:
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
2024-06-04 02:28:49 +00:00
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
2024-05-11 21:47:19 +00:00
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
elif self.arch_type == "llama":
2024-11-10 18:19:48 +00:00
LlamaClass = LlamaModel_Adapted # if (self.layerskip or "len" in self.capabilities) else LlamaModel
2024-11-10 00:04:59 +00:00
if n_experts <= 1:
2024-12-24 23:54:48 +00:00
config = LlamaConfig(
2024-12-22 04:52:10 +00:00
vocab_size=n_vocab,
hidden_size=d_model,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
sliding_window=75 * 12, # 12 second context window
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
attn_implementation=hf_attention,
2024-06-04 02:28:49 +00:00
#gradient_checkpointing=self.gradient_checkpointing,
2024-12-24 23:54:48 +00:00
)
print( config )
self.model = LlamaClass(config)
2024-11-10 00:04:59 +00:00
# replace with desired attention
if attention_backend not in HF_ATTENTIONS:
self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend )
else:
self.model = MixtralModel(MixtralConfig(
vocab_size =n_resp_tokens,
hidden_size=d_model,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout if training else 0.0,
num_key_value_heads=n_heads,
sliding_window=75 * 12, # 12 second context window
output_router_logits=training,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
num_local_experts=n_experts,
num_experts_per_tok=min(2, n_experts),
attn_implementation=hf_attention,
2024-06-04 02:28:49 +00:00
#gradient_checkpointing=self.gradient_checkpointing,
))
if attention_backend not in HF_ATTENTIONS:
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
2024-05-10 04:15:52 +00:00
2024-10-31 18:24:48 +00:00
if self.layerskip:
self.model.layer_dropout_p = layerskip_p_max
self.model.early_exit_scale = layerskip_e_scale
self.model.early_exit_r = layerskip_r
2024-06-04 02:28:49 +00:00
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
2024-05-11 21:47:19 +00:00
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
2023-08-02 21:53:35 +00:00
elif self.arch_type == "retnet":
kwargs = dict(
2024-12-22 04:52:10 +00:00
vocab_size=n_vocab,
2023-08-02 21:53:35 +00:00
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
2023-08-02 21:53:35 +00:00
decoder_retention_heads=n_heads,
decoder_ffn_embed_dim=d_model * 4,
decoder_layers=n_layers,
dropout=p_dropout if training else 0.0,
2024-06-04 02:28:49 +00:00
checkpoint_activations=self.gradient_checkpointing,
activation_fn="gelu",
use_layernorm=self.version < 3,
use_biases=self.version < 3,
use_glu=self.version >= 3,
2023-08-02 21:53:35 +00:00
2024-06-07 01:51:31 +00:00
chunkwise_recurrent=self.causal and self.causal_size > 0,
recurrent_chunkwise_size=self.causal_size if self.causal else 0,
2023-08-02 21:53:35 +00:00
no_output_layer=True,
decoder_normalize_before=True,
2024-06-07 01:51:31 +00:00
rotary_embedding_base=10000
)
if n_experts > 1:
kwargs.update(dict(
use_xmoe=True,
moe_freq=1,
moe_expert_count=n_experts,
moe_gating_use_fp32=False,
))
self.model = RetNetDecoder(RetNetConfig(**kwargs))
2024-11-22 05:08:43 +00:00
elif self.arch_type in ["mamba2"]:
self.model = Mamba2Model(Mamba2Config(
2024-12-22 04:52:10 +00:00
vocab_size=n_vocab,
hidden_size=d_model,
2024-11-22 05:08:43 +00:00
expand=2,
num_hidden_layers=n_layers*2,
residual_in_fp32=True,
))
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
2024-11-22 05:08:43 +00:00
elif self.arch_type in ["mamba"]:
self.model = MambaModel(MambaConfig(
2024-12-22 04:52:10 +00:00
vocab_size=n_vocab,
hidden_size=d_model,
2024-11-22 05:08:43 +00:00
expand=2,
num_hidden_layers=n_layers*2,
residual_in_fp32=True,
))
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
else:
raise RuntimeError(f'Unknown arch specified: {self.arch_type}')
2023-08-04 01:26:36 +00:00
if hasattr( self.model, "embeddings" ):
del self.model.embeddings
if not split_classifiers:
2024-12-22 04:52:10 +00:00
self.classifier = nn.Linear(d_model, n_vocab, bias=classifiers_bias)
self.classifiers = None
self.metrics = None
else:
self.classifier = None
2024-12-20 23:13:37 +00:00
self.classifiers = Classifiers( classifier_l_tokens, d_model, l_names=classifier_l_names, bias=classifiers_bias )
self.metrics = Metrics( classifier_l_tokens )
2023-08-02 21:53:35 +00:00
"""
if tie_classifier_to_embedding:
for i, proj in enumerate( self.classifiers.proj ):
self.classifiers.proj[i].weight = self.resps_emb.embeddings[i].weight
"""
2023-08-02 21:53:35 +00:00
def _forward(
2023-08-02 21:53:35 +00:00
self,
inputs,
mask = None,
is_causal = None,
position_ids = None,
state = None,
layer_skip_lambda = None,
output_attentions = False,
output_hidden_states = False,
2023-08-02 21:53:35 +00:00
):
x = inputs
m = mask #.squeeze(-1).int()
aux_loss = None
attentions = None
hidden_states = None
# HF transformer derived model
if self.arch_type in ["llama", "mistral", "mixtral"]:
kwargs = dict(
inputs_embeds=x,
2024-11-22 05:08:43 +00:00
attention_mask=m,
past_key_values=state,
position_ids=position_ids,
use_cache=False, # not self.training,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
is_causal=is_causal,
)
if self.n_experts > 1 and self.training:
kwargs["output_router_logits"] = True
if self.layerskip and layer_skip_lambda is not None:
kwargs["layer_skip_lambda"] = layer_skip_lambda
output = self.model(**kwargs)
x = output["last_hidden_state"]
# to-do: figure out why KV caching doesn't work
#if not self.training:
if state is not None:
state = output["past_key_values"]
if output_attentions:
attentions = output["attentions"]
if output_hidden_states:
hidden_states = output["hidden_states"]
if self.n_experts > 1 and self.training:
router_logits = output["aux_loss"]
aux_loss = self.model.config.router_aux_loss_coef * load_balancing_loss_func( router_logits, self.model.config.num_local_experts, self.model.config.num_experts_per_tok )
elif self.arch_type == "transformer":
2023-09-12 21:04:45 +00:00
# ensures we specify a quant_level for the transformer implementation's AdaLN
2023-09-07 14:14:03 +00:00
l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels
l = l.to(device)
2023-09-12 21:04:45 +00:00
# inject position information
x = self.sin_emb.add_pe(x)
# pass our inputs through the transformer
2023-08-02 21:53:35 +00:00
for block in self.blocks:
x = block(x, m, l)
2023-08-02 21:53:35 +00:00
elif self.arch_type == "retnet":
2023-09-12 21:04:45 +00:00
# pass our inputs through the RetNet
x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True)
if _ is not None and "l_aux" in _ and self.n_experts > 1:
aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001
elif self.arch_type in ["mamba","mamba2"]:
kwargs = dict(
inputs_embeds=x,
2024-12-03 01:10:42 +00:00
attention_mask=m,
2024-11-22 05:08:43 +00:00
#cache_params=state,
use_cache=False, # not self.training,
#position_ids=position_ids,
#output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
2024-11-22 05:08:43 +00:00
output = self.model(**kwargs)
x = output["last_hidden_state"]
if state is not None:
2024-11-22 05:08:43 +00:00
state = output["cache_params"]
2024-11-22 05:08:43 +00:00
if output_attentions:
attentions = output["attentions"]
if output_hidden_states:
hidden_states = output["hidden_states"]
# process it into a format that I like
if output_hidden_states:
2024-10-31 18:24:48 +00:00
# hidden_states is actually layers + 1, as hidden_states[0] == embedding...........
hidden_states = [ state for state in hidden_states[1:] ]
# apply normalization to these states (to-do: check if this matters)
# but skip the last state, as it already is normalized
hidden_states = [ x if i == self.n_layers - 1 else self.model.norm(output.hidden_states[i]) for i, state in enumerate( hidden_states ) ]
2024-12-07 05:53:46 +00:00
return Logits(x, state, inputs, aux_loss, attentions, hidden_states, None)
# takes a bunch of separate lists and parses them into an ordered array of tuples to guide input sequence creation
def inputs(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor],
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
task_list: list[str] | None = None,
2024-11-09 04:46:26 +00:00
time_list: list[Tensor] | None = None,
quant_levels: int | list[int] | Tensor | None = None
):
device = text_list[0].device
batch_size = len(text_list)
inputs = [ [] for _ in range(batch_size) ]
for i in range(batch_size):
quant_level = quant_levels[i] if quant_levels is not None else 0
task_type = task_list[i] if task_list is not None else "tts"
2024-11-10 18:19:48 +00:00
timestep = time_list[i] if time_list is not None else None
classifier_level = None
# insert task type as a string
inputs[i].append( ( "task", task_type ) )
# to-do: maybe not split the below blocks up
# might be beneficial in the event I need to use a difference sequence, such as STT tasks
# Base-line TTS task
# Sequence: <text><sep><rvq lvl><sep><prom><sep><resp>
# prom /may/ include <task> tokens inside to help guide things, per SpeechX
if f'<{task_type}>' in get_task_symmap() and task_type not in special_tasks:
# insert the text prompt
if text_list is not None and text_list[i] is not None:
inputs[i].append( ( "text", text_list[i] ) )
# insert lang token if we're trained for it
if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None:
inputs[i].append( ( "lang", lang_list[i] ) )
# insert RVQ level guidance token if the model is versioned for it
if self.rvq_l_emb is not None and not self.interleave:
inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) )
classifier_level = "AR:0:0" if quant_level == 0 else f'NAR:{quant_level-1}:{quant_level}'
# insert input audio prompt
if proms_list is not None and proms_list[i] is not None:
inputs[i].append( ( "prom", proms_list[i] ) )
# insert tone token if we're trained for it
if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None:
inputs[i].append( ( "tone", tone_list[i] ) )
2024-11-10 00:12:54 +00:00
# insert timestep token
2024-11-10 18:19:48 +00:00
if timestep is not None:
2024-11-14 13:34:22 +00:00
# force set to use this classifier level
classifier_level = "NAR:0:0"
# store timestep information
if self.masking_ratio in ["random", "rand"]:
# cosine scheduled timestep => masking ratio
p = math.cos(timestep * math.pi * 0.5)
# I don't think is is necessary as the timestep is encoded in the sequence by the number of masked tokens, probably.
if self.inject_timestep_embedding:
inputs[i].append( ("timestep", torch.tensor([timestep], device=device, dtype=self.time_emb.mlp[0].weight.dtype) ) )
else:
# a paper said to use a fixed masking ratio of 0.8 for training
# ...but I want to make it user adjustable
p = self.masking_ratio
# store dropout mask (if training, as this gets used later to mask the input embeddings if provided)
if self.training:
dropout_mask = _dropout_mask( resps_list[i], p )
inputs[i].append( ("dropout_mask", dropout_mask ) )
# insert the current output response
if resps_list is not None and resps_list[i] is not None:
inputs[i].append( ( "resp", resps_list[i] ) )
inputs[i].append( ("classifier_level", classifier_level) )
# Audio length prediction task
# Sequence: <text><sep><rvq lvl><prom><sep><len>
elif task_type == "len":
# throw an error so we don't silently train without this
if self.len_emb is None:
raise Exception(f"Requesting task `{task_type}` but corresponding embedding is not defined.")
# insert the text prompt
if text_list is not None and text_list[i] is not None:
inputs[i].append( ( "text", text_list[i] ) )
# insert lang token if we're trained for it
if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None:
inputs[i].append( ( "lang", lang_list[i] ) )
# technically will always be level 0 but for the sake of keeing the input formatting coherent...
if self.rvq_l_emb is not None:
2024-11-10 18:19:48 +00:00
inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) )
# insert input audio prompt
if proms_list is not None and proms_list[i] is not None:
inputs[i].append( ( "prom", proms_list[i] ) )
# insert tone token if we're trained for it
if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None:
inputs[i].append( ( "tone", tone_list[i] ) )
# insert output length tokens (if it exists)
if len_list is not None and len_list[i] is not None:
inputs[i].append( ( "len", len_list[i] ) )
# "encode" length to tokens for 0-9 + stop
elif resps_list is not None and resps_list[i] is not None:
# yes this could be encoded better
inputs[i].append( ( "len", torch.tensor([ 0 ] + [ int(i) for i in str( resps_list[i].shape[0]) ] + [ 10 ], device=device, dtype=torch.int16) ) )
inputs[i].append( ("classifier_level", "len") )
# Speech-to-Text prediction task
# Sequence: <resp><sep><rvq lvl><sep><text>
elif task_type == "stt":
# insert the input response
if resps_list is not None and resps_list[i] is not None:
inputs[i].append( ( "resp", resps_list[i] ) )
# insert lang token if we're trained for it
if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None:
inputs[i].append( ( "lang", lang_list[i] ) )
# insert RVQ level guidance token if the model is versioned for it
if self.rvq_l_emb is not None and not self.interleave:
inputs[i].append( ( "quant_level", torch.tensor([ quant_level ], device=device, dtype=torch.int16) ) )
# insert the output text prompt
if text_list is not None and text_list[i] is not None:
inputs[i].append( ( "text", text_list[i] ) )
inputs[i].append( ("classifier_level", "stt") )
else:
raise Exception(f'Unrecognized task: {task_type}')
return inputs
2024-12-22 04:52:10 +00:00
def offset_inputs(
self,
inputs: list,
direction: int = 1, # -1 to de-offset
):
offsets = _get_offsets()
for batch_index, batch_input in enumerate(inputs):
quant_level = None
classifier_level = None
# pre-iterate
for name, input in batch_input:
if name == "quant_level":
quant_level = input
elif name == "classifier_level":
classifier_level = input
for name, input in batch_input:
if not isinstance( input, torch.Tensor ):
continue
2024-12-22 21:05:45 +00:00
k = name
if name == "prom":
k = f'prom|{quant_level}'
elif name == "resp":
k = f'resps|{classifier_level}'
2024-12-22 04:52:10 +00:00
2024-12-22 21:05:45 +00:00
if k not in offsets:
continue
start, end = offsets[k]
2024-12-22 04:52:10 +00:00
for i, t in enumerate( input ):
2024-12-22 21:05:45 +00:00
input[i] += start * direction
2024-12-22 04:52:10 +00:00
return inputs
def inputs_to_embeddings(
self,
inputs: list,
quant_levels: int | list[int] | Tensor | None = None
):
# handles tasks where the prompt has task tokens injected in the middle
def prompt_input_to_embedding( input, quant_level ):
2024-07-19 04:25:32 +00:00
if isinstance(input, str):
return self.tasks_emb( torch.tensor( [ get_task_symmap()[f'<{input}>'] ], device=device, dtype=torch.int16) )
# get RVQ level 0, or up to targetted RVQ level inference
if self.version <= 4:
2024-08-04 01:23:36 +00:00
return self.proms_emb(
input if quant_level == 0 else input[:, :quant_level]
)
2024-08-04 01:23:36 +00:00
return self.proms_emb(
input if input.dim() == 1 else input[:, : 1 if quant_level == 0 else quant_level],
quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level
offset = 0,
)
# yuck
token_dropout_rate = self.config.experimental.token_dropout_rate if self.config else 0.0
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels if self.config else None
if self.dropout_token is None or not self.training:
token_dropout_rate = 0.0
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [1, self.resp_levels]
x_list = []
for batch_index, batch_input in enumerate(inputs):
batch = []
quant_level = quant_levels[batch_index] if quant_levels is not None else 0
2024-07-19 04:25:32 +00:00
task_type = "tts"
2024-08-04 01:23:36 +00:00
input_prom = None
classifier_level = None
2024-11-07 17:32:11 +00:00
dropout_mask = None
2024-11-09 04:46:26 +00:00
timestep = None
2024-11-07 17:32:11 +00:00
# pre-iterate
for name, input in batch_input:
if name == "classifier_level":
classifier_level = input
elif name == "dropout_mask":
dropout_mask = input
elif name == "timestep":
timestep = input
2024-11-07 17:32:11 +00:00
for name, input in batch_input:
# technically can provide a map for input_name => embedding, but some embedding requires additional processing
embedding = None
# is already an embedding
if name == "task":
# noop
# *maybe* inject a token for specifying task type
task_type = input
continue
elif name == "text":
embedding = self.text_emb( input )
2024-07-19 04:25:32 +00:00
device = embedding.device
elif name == "quant_level" and self.rvq_l_emb is not None:
embedding = self.rvq_l_emb( input )
2024-06-05 15:30:04 +00:00
elif name == "lang" and self.langs_emb is not None:
embedding = self.langs_emb( input )
elif name == "prom":
proms = [ input ] if isinstance(input, torch.Tensor) else input
2024-11-10 00:04:59 +00:00
"""
if proms is None:
continue
"""
2024-11-07 17:32:11 +00:00
# to-do: probably insert separators if task requires it?
2024-07-19 04:25:32 +00:00
embedding = torch.cat( [ prompt_input_to_embedding( input, quant_level ) for input in proms if input is not None ] )
2024-06-05 15:30:04 +00:00
elif name == "tone" and self.tones_emb is not None:
embedding = self.tones_emb( input )
elif name == "resp":
if self.interleave:
embeddings = [ self.resps_emb(
input[:, :l+1],
#offset = 0,
#quant_level = l,
name = 'AR:0:0' if l == 0 else f'NAR:{l-1}:{l}',
) for l in range( input.shape[-1] ) ]
embedding = _interleave_sequence_reshape( embeddings )
# if training NAR-len RVQ level 0
2024-11-10 18:19:48 +00:00
elif dropout_mask is not None:
embedding = self.resps_emb(
2024-11-10 00:04:59 +00:00
# if masked use masked token, else original token
torch.where( dropout_mask, self.stop_token, input if input.dim() == 1 else input[:, 0] ),
#quant_level = 0,
name = classifier_level,
)
# NAR-len
elif classifier_level == "NAR:0:0":
embedding = self.resps_emb(
input if input.dim() == 1 else input[:, 0],
#quant_level = 0,
name = classifier_level,
)
# cheat-y way to handle performing STT across all levels
elif task_type in summed_embeddings_task:
2024-09-08 03:13:49 +00:00
# we do a manual sum because I trained it to use the AR embeddings + NAR embeddings for STT......
embedding = sum([ self.resps_emb(
input[:, :l+1],
2024-11-13 20:27:15 +00:00
offset = 0 if l == 0 else 1, # or maybe set to 1
quant_level = l,
#name = 'AR:0:0' if l == 0 else f'NAR:{l-1}:{l}',
2024-09-08 03:13:49 +00:00
sums = False
) for l in range( input.shape[-1] - 1 ) ])
else:
# get RVQ level 0, or up to targetted RVQ level inference
2024-06-09 01:30:15 +00:00
if self.version <= 4:
embedding = self.resps_emb(
input if quant_level == 0 else input[:, :quant_level],
quant_level
)
2024-06-09 01:30:15 +00:00
else:
"""
offset = 0
2024-11-07 15:10:18 +00:00
if "nar" not in self.capabilities:
offset = 0
elif quant_level > 0:
offset = 1
2024-06-09 01:30:15 +00:00
embedding = self.resps_emb(
input if input.dim() == 1 or quant_level == 0 else input[:, :quant_level],
offset = offset,
2024-08-04 01:23:36 +00:00
quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level
2024-06-09 01:30:15 +00:00
)
"""
embedding = self.resps_emb(
input if input.dim() == 1 or quant_level == 0 else input[:, :quant_level],
#offset = 0 if classifier_level.startswith("AR:") else 1,
name = classifier_level,
quant_level = 0 if quant_level == 0 else quant_level - 1, # input is one below the target quant level
)
# apply token dropout
if token_dropout_rate > 0.0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
steps = embedding.shape[0] - (1 if quant_level == 0 else 0) # do not mess with stop token
for i in range( steps ):
if random.random() > token_dropout_rate:
continue
embedding[i] = self.dropout_token
2024-11-14 13:34:22 +00:00
elif name == "timestep" and self.time_emb is not None:
2024-11-10 00:04:59 +00:00
embedding = self.time_emb( input )
elif name == "len" and self.len_emb is not None:
embedding = self.len_emb( input )
else:
# should probably raise an exception so things aren't processed silently
continue
2024-11-10 00:04:59 +00:00
batch.append(embedding)
x_list.append( _join( batch, self.sep ) )
return x_list
2024-11-10 00:04:59 +00:00
# get an attribute from a given input list
def get_input(
self,
inputs,
name,
at=None,
):
2024-11-10 18:19:48 +00:00
find_all = at is None
res = [] if at is None else None
2024-11-10 00:04:59 +00:00
for batch_index, batch_input in enumerate(inputs):
2024-11-10 18:19:48 +00:00
if not find_all and batch_index != at:
2024-11-10 00:04:59 +00:00
continue
for n, input in batch_input:
2024-11-10 18:19:48 +00:00
if n != name:
continue
if not find_all:
2024-11-10 00:04:59 +00:00
return input
2024-11-10 18:19:48 +00:00
res.append( input )
return res
2024-11-10 00:04:59 +00:00
# creates position ids from a given input list
# if not unified_position_ids, then each input segment will have its own sequence
def inputs_to_position_ids(
self,
inputs: list,
mask: Tensor,
):
device = mask.device
# shamelessly grabbed from modeling_llama.py
ids = mask.long().cumsum(-1) - 1
ids.masked_fill_( mask == 0, 1 )
# there's a better way
if not self.unified_position_ids:
x_list = []
2024-07-19 04:25:32 +00:00
def get_input_token_length( name, input, task ):
2024-07-19 04:25:32 +00:00
# task token
if isinstance(input, str):
return 1
# list of tokens
if not isinstance(input, torch.Tensor):
return sum( [ i.shape[0] for i in input if isinstance(i, torch.Tensor) ] )
2024-07-19 04:25:32 +00:00
# interleaved model
if self.interleave and name == "resp":
return input.shape[0] * input.shape[1]
# ending input will not have a separator later
return input.shape[0]
2024-07-19 04:25:32 +00:00
for batch_index, batch_input in enumerate(inputs):
# pre-iterate
task = "tts"
for name, input in batch_input:
if name == "task":
task = input
2024-07-19 04:25:32 +00:00
batch = torch.cat( [
torch.tensor([*range(get_input_token_length(name, input, task) + (1 if name != task_outputs.get(task, name) else 0))], device=device, dtype=torch.int32)
for name, input in batch_input if name not in non_tokened_names
2024-07-19 04:25:32 +00:00
] )
delta = ids[batch_index].shape[0] - batch.shape[0]
if delta > 0:
2024-08-04 13:18:57 +00:00
batch = torch.cat( [ batch, torch.tensor([1] * delta, device=device, dtype=torch.int32) ] )
x_list.append( batch )
ids = torch.stack( x_list )
return ids.to(device=device, dtype=torch.int32)
def calc_loss(
self,
inputs: list,
logits,
quant_levels: list[int] | None = None,
compute_hard_loss = True,
compute_acc = True,
):
loss = {}
stats = {}
2024-07-19 04:25:32 +00:00
device = logits[0].device
batch_size = len(logits)
classifier_levels = self.get_input( inputs, "classifier_level" )
# handles tasks where the prompt has task tokens injected in the middle
def prompt_input_to_token( input, quant_level ):
"""
if isinstance(input, str):
return torch.tensor( [ self.ignore_index ], device=device, dtype=torch.int16)
return torch.tensor( [ self.ignore_index ] * input.shape[0], device=device, dtype=torch.int16)
"""
2024-07-19 04:25:32 +00:00
if isinstance(input, str):
2024-08-04 13:18:57 +00:00
return torch.tensor( [ get_task_symmap()[f'<{input}>'] ], device=device, dtype=torch.int16)
# ignore prom, fill with mock tokens, because the prom embeddings don't directly map to tokens
if self.version < 4 or (self.version >= 5 and self.config and self.config.experimental.audio_embedding_sums):
return torch.full_like(input[..., 0], self.ignore_index)
return input if input.dim() == 1 else input[:, quant_level]
for batch_index, batch in enumerate(inputs):
quant_level = quant_levels[batch_index]
target = []
causal = True
task_type = "tts"
dropout_mask = None
classifier_level = None
output_len = 0
for name, input in batch:
if name == "task":
task_type = input
elif name == "dropout_mask":
dropout_mask = input
elif name == "classifier_level":
classifier_level = input
2024-11-13 15:54:20 +00:00
# autoregressive, causal
if classifier_level.startswith("AR:"):
causal = True
# nonautoregressive, parallel
elif classifier_level.startswith("NAR:"):
causal = False
2024-06-06 02:02:05 +00:00
it = 0
for name, input in batch:
token = None
ignored = False
2024-08-03 13:40:39 +00:00
# non-tokened tasks
if name in non_tokened_names:
continue
# prom can either be a tensor itself or a list of tensors and strings
if name == "prom":
# expand to list if not a list
proms = [ input ] if isinstance(input, torch.Tensor) else input
# iterate over the list to inject their tokens
token = torch.cat( [ prompt_input_to_token( input, quant_level ) for input in proms if input is not None ] )
elif name == "resp":
# mask found, apply it
if dropout_mask is not None:
# if mask use original token, else ignore
token = torch.where( dropout_mask, input if input.dim() == 1 else input[:, 0], self.ignore_index )
# flatten
elif self.interleave:
token = _interleave_sequence_flatten( [ input[:, l] for l in range( input.shape[-1] ) ] )
# use resps as-is
else:
token = input if input.dim() == 1 else input[:, quant_level]
# not a special input, inject as-is
else:
token = input
if not isinstance(token, torch.Tensor):
continue
2024-12-22 04:52:10 +00:00
# offset to flattened vocab ranges
2024-12-22 22:15:24 +00:00
"""
2024-12-22 04:52:10 +00:00
if self.classifier is not None:
offsets = _get_offsets()
2024-12-22 21:05:45 +00:00
k = name
if name == "stt":
k = "text"
if name == "prom":
k = f'prom|{quant_level}'
elif name == "resp":
k = f'resps|{classifier_level}'
if k in offsets:
start, end = offsets[k]
2024-12-22 04:52:10 +00:00
for i, t in enumerate( token ):
if t == self.ignore_index:
continue
2024-12-22 21:05:45 +00:00
token[i] += start
2024-12-22 22:15:24 +00:00
"""
2024-12-22 04:52:10 +00:00
if token.is_floating_point():
ignored = True
# grab range of our logits for later
seq_len = token.shape[0]
start, end = it, it+seq_len
it += seq_len + 1 # +1 to incorporate the separator
# deduce if a name for a task is an input or output
if name != task_outputs.get(task_type, name):
if self.ignore_inputs_for_loss:
ignored = True
else:
output_len = seq_len
if ignored:
# pruned
if self.config.loss_factors:
continue
# fill with ignored out tensor
token = torch.tensor( [ self.ignore_index ] * input.shape[0], device=device, dtype=torch.int16)
# perform loss calculation on the individual piece
if self.config.loss_factors:
loss_factor = self.loss_factor(name)
if loss_factor == 0.0:
continue
logit = logits[batch_index][start:end]
if causal and seq_len > 1:
l = self.causal_size
logit = logit[..., :-l, :]
token = token[..., l:] # shift sequence to the right by one (or causal chunk size)
if compute_hard_loss:
nll = F.cross_entropy( logit, token.long(), ignore_index=self.ignore_index ) * loss_factor
if f'{name}.nll' not in loss:
loss[f'{name}.nll'] = []
loss[f'{name}.nll'].append( nll )
if compute_acc:
if self.metrics is not None:
metrics = self.metrics.calc_accuracy( [ logit ], [ token ], self.classifiers.indices([ classifier_level ]) )
else:
accuracy_metric = MulticlassAccuracy(
logit.shape[-1],
top_k = 10,
average="micro",
multidim_average="global",
ignore_index = -100
).to(logit.device)
metrics = accuracy_metric( logit, token )
if f'{name}.acc' not in stats:
stats[f'{name}.acc'] = []
stats[f'{name}.acc'].append( metrics )
# add to list
else:
target.append( token )
# perofrm loss calculation on the entire sequence
if not self.config.loss_factors:
2024-12-22 22:15:24 +00:00
target = _join( target, torch.tensor(self.ignore_index, device=target[-1].device) )
logit = logits[batch_index]
2024-06-05 04:48:51 +00:00
# shift if causal
if causal:
l = self.causal_size
logit = logit[..., :-l, :] # shift the target so that token n...
target = target[..., l:] # ...predicts token n + 1
if compute_hard_loss:
nll = F.cross_entropy( logit, target, ignore_index=self.ignore_index )
if 'nll' not in loss:
loss['nll'] = []
loss["nll"].append( nll )
if compute_acc:
if self.metrics is not None:
metrics = self.metrics.calc_accuracy( [ logit ], [ target ], self.classifiers.indices([ classifier_level ]) )
else:
accuracy_metric = MulticlassAccuracy(
logit.shape[-1],
top_k = 10,
average="micro",
multidim_average="global",
ignore_index = -100
).to(logit.device)
metrics = accuracy_metric( logit, target )
if 'acc' not in stats:
stats['acc'] = []
stats["acc"].append( metrics )
# average
loss = { name: sum( loss[name] ) / len( loss[name] ) for name in loss.keys() }
stats = { name: sum( stats[name] ) / len( stats[name] ) for name in stats.keys() }
return LossStats(loss, stats)
def forward(
self,
inputs: list,
quant_levels: list[int] | None = None,
state: dict | list | None = None,
layer_skip_variables: dict | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
# return early if it's "good" enough"
# lambda because we need to capture the classifier_levels and mask
exited_layer = self.n_layers
def layer_skip_lambda( layer, logits ):
nonlocal exited_layer
kwargs = {
"entropy_threshold": 0.05,
"varentropy_threshold": 0.05,
"min_layer": self.n_layers // 2,
"max_layer": self.n_layers,
}
kwargs.update( layer_skip_variables )
# don't bother on early layers
if layer < kwargs["min_layer"]:
return False
# bail if we want to force early layers
if kwargs["max_layer"] < layer:
return True
# hidden states aren't normalized
x = self.model.norm( logits )
# output projection layer with masking
if self.classifier is not None:
x = self.classifier(x) # * m
elif self.classifiers is not None:
logits = self.classifiers(logits, levels = classifier_levels) # * m
# calculate metrics
metrics = calculate_entropix_metrics( logits )
# exit early if "good enough""
early = metrics["logits_entropy"] <= kwargs["entropy_threshold"] and metrics["logits_varentropy"] <= kwargs["varentropy_threshold"]
if early:
exited_layer = layer
return early
# derive quant levels from inputs if not provided
if quant_levels is None:
2024-12-07 05:53:46 +00:00
quant_levels = [ x.item() for x in self.get_input( inputs, "quant_level" ) ]
x_list = self.inputs_to_embeddings( inputs, quant_levels )
x, mask = list_to_tensor(x_list)
training = self.training
teaching = self.teaching
device = x.device
batch_size = len(x_list)
# pure AR
if quant_levels is None:
quant_levels = [ 0 for _ in range(batch_size) ]
# we only need hidden states if we're training with layerskip
if self.layerskip and training:
output_hidden_states = True
# pad our input and mask, but retain the original length by doing it after
if self.l_padding and x.shape[1] % self.l_padding != 0:
# pad input
shape = list(x.shape)
shape[1] = self.l_padding - shape[1] % self.l_padding
padding = torch.zeros(shape, dtype=x.dtype, device=x.device)
x = torch.cat([x, padding], dim=1)
# pad mask
shape[2] = 1
2024-11-22 05:08:43 +00:00
padding = torch.zeros(shape[:2], dtype=x.dtype, device=x.device)
mask = torch.cat([mask, padding], dim=1)
2024-11-22 05:08:43 +00:00
m = mask.unsqueeze(dim=-1)
# needs to be done here as we still have our raw inputs
position_ids = self.inputs_to_position_ids( inputs, mask=mask ) if not self.unified_position_ids else None
classifier_levels = self.get_input( inputs, name="classifier_level" )
casual_levels = [ "AR:0:0", "stt", "len" ]
# right now limit to new versions because I need to retrain the model for noncausal masks...
is_causal = [ l in casual_levels for l in classifier_levels ] if self.noncausal_masks else [ True for l in classifier_levels ]
output = self._forward(
inputs=x,
mask=mask,
state=state,
is_causal=is_causal,
position_ids=position_ids,
output_attentions = output_attentions,
output_hidden_states = output_hidden_states,
layer_skip_lambda = layer_skip_lambda if self.layerskip and layer_skip_variables else None,
)
2023-08-02 21:53:35 +00:00
logits = output.logits
hidden_states = output.hidden_states
# output projection layer
# the very, very original implementation multiplied by the mask, but the mask only attends to padding, and the padding gets removed anyways
if self.classifier is not None:
logits = self.classifier(logits) # * m
if output.hidden_states:
for i, state in enumerate( hidden_states ):
hidden_states[i] = self.classifier(hidden_states[i]) # * m
# to-do: piece-wise classification, now that there's a head for text
# although again, one single monolithic head would be preferable instead......
elif self.classifiers is not None:
logits = self.classifiers(logits, levels = classifier_levels) # * m
if hidden_states is not None:
for i, state in enumerate( hidden_states ):
hidden_states[i] = self.classifiers(hidden_states[i], levels = classifier_levels) # * m
2023-08-02 21:53:35 +00:00
# Remove padding
logits = [ hi[:li] for hi, li in zip(logits, map(len, x_list)) ]
if hidden_states is not None:
for i, state in enumerate( hidden_states ):
hidden_states[i] = [ hi[:li] for hi, li in zip(hidden_states[i], map(len, x_list)) ]
2024-12-22 22:15:24 +00:00
# de-offset if needed
if self.classifier is not None:
offsets = _get_offsets()
for batch_index, classifier_level in enumerate( classifier_levels ):
if classifier_level == "stt":
k = "text"
elif classifier_level == "len":
k = "len"
else:
k = f'resps|{classifier_level}'
if k not in offsets:
continue
start, end = offsets[k]
logits[batch_index] = logits[batch_index][:, start:end]
if not training:
loss = None
stats = None
self.loss = None
self.stats = None
2024-12-22 21:05:45 +00:00
# compute loss if the target is given
else:
loss, stats = self.calc_loss( inputs=inputs, logits=logits, quant_levels=quant_levels )
# compute it as an aux-loss
if self.layerskip:
early_exit_loss = {}
if not hasattr( self, "training_steps" ):
self.training_steps = 0
for i, state in enumerate( hidden_states ):
loss, stats = self.calc_loss( inputs=inputs, logits=hidden_states[i], quant_levels=quant_levels )
for k, v in loss.items():
K = f'early_exit.{k}'
if K not in early_exit_loss:
early_exit_loss[K] = []
early_exit_loss[K].append( v )
for k, v in early_exit_loss.items():
loss[k] = self.model.early_exit_loss( losses=v, t=self.training_steps )
# to-do: instead make the cirriculum rely on samples processed instead of steps
self.training_steps += 1 # batch_size
# include any additional losses (for example: MoE router)
if output.loss is not None:
loss["aux_loss"] = output.loss
self.loss = loss
self.stats = stats
# rewrap, because we're modifying the logits here
2024-12-07 05:53:46 +00:00
return Logits(logits, output.state, inputs, loss, output.attentions, hidden_states, exited_layer)
def sample(
self,
2024-07-30 00:15:07 +00:00
logits: list[Tensor], # logit scores
prev_list: list[Tensor] | None = None, # previous tokens
quant_levels: list[int] | None = None, # to-do: derive this from the prev_list
**sampling_kwargs,
):
# yikes
temperature = sampling_kwargs.get("temperature", 1.0)
min_temperature = sampling_kwargs.get("min_temperature", -1.0)
top_k = sampling_kwargs.get("top_k", -100)
top_p = sampling_kwargs.get("top_p", 1.0)
min_p = sampling_kwargs.get("min_p", 0.0)
2024-07-30 00:15:07 +00:00
# repetition penalty parameters
repetition_penalty = sampling_kwargs.get("repetition_penalty", 1.0)
repetition_penalty_decay = sampling_kwargs.get("repetition_penalty_decay", 0.0)
2024-07-30 00:15:07 +00:00
# length penalty parameters
length_penalty = sampling_kwargs.get("length_penalty", 0.0)
2024-07-30 00:15:07 +00:00
# beam sampling parameters
beam_width = sampling_kwargs.get("beam_width", 0)
2024-07-30 00:15:07 +00:00
# mirostat sampling parameters
mirostat = sampling_kwargs.get("mirostat", None)
2024-07-30 00:15:07 +00:00
# DRY sampling parameters
dry_multiplier = sampling_kwargs.get("dry_multiplier", 0.0)
dry_base = sampling_kwargs.get("dry_base", 1.75)
dry_allowed_length = sampling_kwargs.get("dry_allowed_length", 2)
#
top_no = sampling_kwargs.get("top_no", 1.0)
#
attentions = sampling_kwargs.get("attentions", None)
batch_size = len( logits )
if min_temperature < 0:
min_temperature = temperature
# pick last RVQ level
if prev_list is not None:
prev_list = [ prevs if prevs.dim() == 1 else prevs[:, -1] for prevs in prev_list ]
scores = None
entropy = None
#logits = [ logit.to(device="cpu", dtype=logit.dtype if logit.dtype != torch.float16 else torch.float32) for logit in logits ]
#logits = [ logit.to(device="cpu") for logit in logits ]
# (AR) entropix sampling
# we do it before everything to retain logits for the entire sequence (even though it's still better to pass only the last token)
if attentions is not None and quant_levels is None:
# move to CPU for speedups
seq_lens = [ logit.shape[0] for logit in logits ]
attentions = torch.stack(attentions, dim=1).to(device="cpu") # ( batch, layer, heads, seq_len, seq_len )
res = [ sample_entropix(
logit[:seq_lens[batch], :], # ( seq_len, vocab )
attentions[batch, :, :, :seq_lens[batch], :seq_lens[batch]], # (layer, heads, seq_len, seq_len )
temperature,
top_k,
top_p,
min_p,
) for batch, logit in enumerate(logits) ]
if res:
2024-11-08 19:34:39 +00:00
return Sampled([ r[0] for r in res ], logits, scores, [ r[1] for r in res ])
"""
elif quant_levels is None:
seq_lens = [ logit.shape[0] for logit in logits ]
entropy = [ calculate_entropix_metrics(
logit[:seq_lens[batch], :], # ( seq_len, vocab )
#attentions[batch, :, :, :seq_lens[batch], :seq_lens[batch]], # (layer, heads, seq_len, seq_len )
) for batch, logit in enumerate(logits) ]
"""
# (NAR) return the entire generated response
2024-07-30 00:15:07 +00:00
# Parallel decoding relies on the last N tokens in the logits, because each token predicts the next RVQ layer in the same place (forgetfully obviously)
if quant_levels is not None: # and "nar" in self.capabilities: # for when I get around to coping about dropping the NAR entirely
seq_lens = map(len, prev_list)
logits = [ logit[-l:] for logit, l in zip(logits, seq_lens) ]
# (AR chunkwise) return the last chunkwise piece
2024-06-07 01:51:31 +00:00
elif self.causal:
seq_lens = [ logit.shape[0] - self.causal_size for logit in logits ]
2024-06-07 01:51:31 +00:00
logits = [ logit[-self.causal_size:] for logit in logits ]
2024-08-03 13:40:39 +00:00
# (NAR) disable stop token
if quant_levels is not None and "ar" in self.capabilities:
logits = [ ban_tokens(logit, tokens=[self.stop_token]) for logit, l in zip( logits, map(len, prev_list) ) ]
2024-08-03 13:40:39 +00:00
# (AR-len) disable extraneous tokens
2024-11-07 15:10:18 +00:00
"""
2024-08-03 13:40:39 +00:00
if quant_levels is None and "len" in self.capabilities:
logits = [ ban_tokens(logit, tokens=[*range(11, logit.shape[-1])]) for logit, l in zip( logits, map(len, prev_list) ) ]
2024-11-07 15:10:18 +00:00
"""
# perform repetition penalizing
if prev_list is not None and repetition_penalty != 1.0:
logits = [ reptition_penalize(logit, previous=prevs, factor=repetition_penalty, decay=repetition_penalty_decay) for logit, prevs in zip( logits, prev_list ) ]
# (AR) perform length penalizing
2024-10-05 03:30:47 +00:00
if quant_levels is None and self.causal and prev_list is not None and length_penalty != 0.0:
logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, prev_list) ) ]
# perform min_p filtering of our logits
if min_p > 0.0:
logits = [ min_p_filtering(logit, min_p=min_p) for logit in logits ]
# perform top_k/top_p filtering of our logits
if top_k > 0 or top_p < 1.0:
logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ]
# trigger dynamic temperature sampling if the minimum temperature is not the same as the sampling temperature
# epsilon float comparison because I don't trust Python
if abs(temperature - min_temperature) >= 0.001:
logits = [ dynamic_temperature(logit, temperature=temperature, min_temperature=min_temperature) for logit in logits ]
elif temperature > 0.0:
logits = [ logit / temperature for logit in logits ]
# do top-no logit processing
if top_no > 0.0:
logits = [ top_no_logits_processing(logit) for logit in logits ]
2024-07-30 00:15:07 +00:00
# do DRY sampling
if dry_multiplier > 0.0 and prev_list is not None:
logits = [ dry_sampling(logit, previous=prevs, factor=dry_multiplier, base=dry_base, allowed_length=dry_allowed_length) for logit, prevs in zip( logits, prev_list ) ]
2024-07-30 00:15:07 +00:00
# do mirostat sampling
# currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work
if mirostat is not None:
# mirostat sampling
scores = [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ]
res = [ state["token"] for state in scores ]
# do beam search (naive implementation)
# picks the top-k across all batches, and re-batches those resultant tokens
# returns the logit scores as well to be P-concatted with the previous scores
# to-do: not naively implement beam searching
elif beam_width > 1:
candidates = top_k_logits_list( logits, beam_width )
res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ]
scores = [ logits[batch].flatten()[token] for batch, token in candidates ]
# basic sampling
else:
# argmax instead
if temperature <= 0.0:
res = [ logit.argmax(dim=-1) for logit in logits ]
else:
res = [ Categorical(logits=logit).sample() for logit in logits ]
# calculate token probabilities
2024-11-10 18:19:48 +00:00
scores = [
[ F.softmax(logit[i, :], dim=-1)[token].item() for i, token in enumerate(tokens) ]
for logit, tokens in zip(logits, res)
]
2024-12-25 05:14:32 +00:00
return Sampled(res, logits, scores, entropy)
# this is a VERY basic implementation to test if a HF-ified model works (it sort of does)
if __name__ == "__main__":
from transformers import LlamaForCausalLM, LlamaTokenizer
from ..models import download_model, DEFAULT_MODEL_PATH
from ..emb.qnt import decode_to_file
from ..utils.io import torch_load
# hack in a non-causal mask
def _update_noncausal_mask(
attention_mask,
inputs_embeds,
cache_positions,
past_key_values_length,
output_attentions,
):
# create noncausal mask
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
# generate default mask based on input
if attention_mask is None:
attention_mask = torch.ones( (bsz, seq_len), dtype=torch.bool, device=inputs_embeds.device )
# make square
expanded_mask = attention_mask[:, None, None, :].expand( bsz, 1, seq_len, seq_len ).to( dtype=inputs_embeds.dtype )
# invert from 1.0 = attend, 0.0 = masked to 0.0 = valid, -inf = masked
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
device = "cuda"
dtype = torch.bfloat16
is_from_pretrained = True
if is_from_pretrained:
# tokenizer = LlamaTokenizer.from_pretrained("ecker/vall-e", revision="hf")
hf_model = LlamaForCausalLM.from_pretrained("ecker/vall-e", revision="hf")
hf_model.to(device=device, dtype=dtype)
hf_model.eval()
model = hf_model.model
else:
download_model()
model = LlamaModel(LlamaConfig(
vocab_size=1024,
hidden_size=1024,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=1024*4,
num_hidden_layers=12,
num_attention_heads=16,
attention_dropout=0.0,
num_key_value_heads=16,
sliding_window=75 * 12, # 12 second context window
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
))
state_dict = torch_load(DEFAULT_MODEL_PATH)['module']
state_dict_model = {}
for k, v in state_dict.items():
if not k.startswith('model.'):
continue
state_dict_model[k.replace("model.", "")] = v
model.load_state_dict( state_dict_model, strict=False )
model.to(device=device, dtype=dtype)
model.eval()
model._original_update_causal_mask = model._update_causal_mask
model._update_noncausal_mask = _update_noncausal_mask
phn = [1,22,111,100,4,37,115,169,11,2]
prom = [
[62,835,835,835,339,395,798,537,537,537,537,222,76,989,548,65,705,375,261,375,297,503,529,571,707,346,266,862,148,496,574,115,115,438,934,339,865,876,63,40,779,461,602,794,10,220,507,869,639,705,869,917,705,893,917,705,869,938,439,175,139,506,375,529,297,705,651,238,962,461,195,441,377,581,473,795,644,626,459,981,767,670,696,73,779,257,738,1017,1019,133,133,1017,835,604,699,626,67,92,707,92,179,179,772,869,441,799,630,238,745,904,904,904,106,133,133,1017,1017,395,883,87,519,594,1002,682,996,540,186,855,430,202,347,889,61,92,542,297,67,669,571,707,346,67,359,571,707,669,604,395,1008,810,35,621,67,600,333,123,284,568,817,243,778,464,638,610,359,538,464,975,321,700,377,484,179,284,284,621,538,464,745,171,171,159,744,744,287,461,69,15,529,67,92,669,464,515,605,24,822,865,293,865,172,638,359,562,138,839,846,775,556,775,1006,917,346,312,148,331,496,646,67,314,15,705,131,855,662,287,172,85,107,519,374,450,391,609,643,778,80,287,794,794,115,785,794,461,699,519,932,522,652,262,508,902,932,932,391,769,18,507,90,442,762,610,610,669,605,35,855,56,989,863,195,464,604,257,904,632,786,951,461,239,195,878,771,146,481,146,481,434,643,917,280,67,464,115,744,744,115,115,115,819,709,63,907,359,519,996,616,682,996,616,519,762,917,841,772,568,954,600,422,893,592,464,626,86,143,615,171,744,744,196,115,821,415,521,799,654,839,644,473,592,953,523,855,738,855,855,876,1017,63,329],
[913,859,740,740,937,601,961,961,877,747,747,559,474,618,20,316,58,316,180,112,290,869,610,869,869,943,127,153,236,794,282,857,984,196,875,648,993,913,860,616,38,833,620,133,123,992,247,367,252,50,298,27,27,631,163,784,271,20,843,514,869,258,180,66,803,281,123,493,831,102,556,992,385,122,31,251,990,827,26,347,460,43,43,460,228,43,841,913,302,544,544,277,859,404,646,775,315,848,726,185,203,314,203,174,252,174,378,954,214,993,924,809,277,765,363,544,363,518,791,185,454,193,193,193,193,193,573,977,924,76,434,56,193,962,610,24,954,459,396,112,903,137,398,474,506,791,839,399,102,25,205,792,459,474,526,817,869,192,792,593,878,506,24,410,539,788,522,667,566,584,588,992,444,24,869,925,635,393,903,742,320,1023,833,136,216,924,220,24,563,630,968,96,708,24,708,127,399,364,67,740,381,981,203,248,607,744,252,996,474,582,248,527,423,25,387,94,229,775,122,474,792,367,650,371,413,448,448,784,506,795,848,298,27,526,96,905,70,693,956,1002,1002,37,747,857,993,124,193,193,193,193,732,732,732,992,447,792,929,291,289,524,451,27,27,524,202,693,374,1002,125,732,585,367,317,679,395,413,189,493,386,650,110,912,505,384,399,851,367,367,27,230,988,810,975,842,956,1002,4,551,729,956,1002,750,648,231,950,193,96,912,410,732,539,103,193,904,491,213,792,792,998,193,399,151,410,96,673,497,1002,241,833,956,630,43,399,775,732,792,792,792,792,917,750,185,812,812,700,859,841,363,833,630],
[786,36,821,937,1000,705,1016,345,345,470,165,581,95,404,95,95,1006,477,95,95,691,254,997,657,176,124,95,673,489,326,218,437,907,590,752,541,1016,821,445,563,181,555,181,345,576,190,987,0,265,997,488,12,598,687,152,108,52,95,95,71,87,945,95,997,754,488,955,694,925,82,18,1020,1006,542,788,441,325,532,246,132,560,532,947,655,653,842,732,36,36,829,36,937,989,989,752,651,87,489,677,260,789,462,95,227,986,955,95,810,624,435,280,868,832,879,863,821,829,937,168,270,489,544,909,562,957,0,593,714,675,690,626,227,794,489,489,563,489,298,269,741,249,516,360,240,516,336,93,808,1022,682,555,737,147,405,476,895,323,694,412,689,963,72,193,298,181,521,741,193,93,153,773,677,689,495,30,564,719,1020,559,940,53,53,53,929,360,971,403,1012,997,919,957,433,919,787,401,401,355,276,370,414,690,697,330,629,552,930,720,259,579,221,62,945,135,1020,626,663,401,153,997,381,830,185,587,853,207,126,66,529,410,113,997,488,431,563,488,488,719,746,790,296,843,752,790,23,984,292,41,27,120,249,124,900,358,801,227,978,95,997,997,997,371,561,86,388,52,667,601,894,545,997,498,900,494,365,852,986,95,841,664,256,18,1020,963,901,447,498,262,388,691,997,646,651,757,468,114,601,437,940,212,655,541,970,870,521,237,957,563,794,563,564,620,489,351,489,489,257,733,629,489,227,622,962,7,598,374,470,114,159,211,298,363,843,818,153,59,452,529,258,419,605,689,526,39,982,829,982,752,678,1005,312],
[673,673,919,866,762,961,52,674,528,528,675,526,12,753,297,967,661,845,482,303,338,1021,506,445,247,214,206,94,434,799,210,885,552,695,853,1022,916,762,764,721,445,434,529,999,771,708,767,498,282,736,227,150,299,12,536,767,321,561,12,530,147,530,262,325,196,990,874,997,944,875,426,12,282,571,571,282,365,534,365,424,89,388,563,222,31,1019,624,74,215,651,1018,74,956,1022,74,18,633,350,72,448,454,769,267,938,12,534,929,723,829,614,505,364,1018,1014,838,673,919,74,223,761,266,78,177,736,20,718,425,1001,366,58,874,58,153,627,312,197,801,530,767,674,196,633,327,425,376,413,1019,209,594,383,744,458,468,711,282,885,640,435,655,571,556,1020,310,116,273,116,504,633,15,736,633,448,662,612,487,345,19,612,665,556,198,778,705,403,706,31,196,197,536,805,427,339,161,241,116,504,58,945,853,734,670,424,807,19,397,175,144,419,19,221,697,68,321,800,210,824,972,712,911,362,427,694,182,651,972,863,684,887,548,806,27,627,639,432,193,103,198,436,837,366,212,125,1001,493,874,808,17,17,127,204,530,300,345,425,246,240,640,906,340,310,633,246,774,114,633,522,777,874,494,577,353,939,571,693,857,722,530,521,354,492,735,214,806,483,736,530,118,234,536,177,132,522,349,259,436,973,528,414,224,762,212,854,744,271,568,127,323,736,304,499,499,78,536,736,805,232,126,468,566,611,52,339,450,258,157,602,594,854,602,599,82,124,472,563,666,174,936,818,66,758,627,52,350,999,734,215,919,1018,874,885],
[528,448,646,190,222,884,939,907,907,673,413,786,527,517,710,449,119,531,565,762,531,501,522,246,162,871,8,594,206,937,462,712,862,151,103,261,882,990,1007,314,683,864,693,812,319,786,107,531,31,342,632,460,269,429,531,531,717,417,321,671,1015,152,467,863,285,875,941,417,475,825,596,957,117,460,162,162,117,630,735,527,272,558,38,39,605,375,39,900,862,646,712,804,622,963,407,93,828,796,306,415,70,667,371,531,1000,411,710,162,812,381,673,498,691,884,928,712,528,48,630,24,593,901,973,579,722,75,139,909,919,328,764,393,777,753,512,577,175,577,512,922,834,863,30,69,94,68,616,691,835,335,486,345,306,374,732,938,580,311,715,495,527,1008,306,369,663,512,369,320,360,80,42,1021,1021,1021,175,568,526,362,320,317,488,613,937,548,966,545,596,177,306,480,522,577,512,512,638,1008,82,100,696,89,714,531,639,460,679,718,492,509,492,624,460,572,531,306,19,473,915,558,285,319,713,1018,381,877,667,425,905,43,437,632,634,324,306,207,324,303,48,69,467,39,902,599,3,617,465,78,918,459,1009,427,751,145,531,349,356,1021,157,507,780,624,165,507,144,270,94,414,899,379,947,994,853,107,586,652,877,92,19,91,188,544,624,470,503,513,13,192,563,145,531,618,743,470,62,701,499,436,679,505,198,959,3,766,839,437,491,395,1021,512,306,512,356,851,1021,1021,78,690,856,735,286,280,4,1008,369,359,309,651,864,561,170,692,952,877,520,959,306,37,1021,31,236,162,773,522,254,446,606,691,804,882,58,974],
[1011,939,881,881,140,937,724,724,937,1011,381,229,965,251,745,69,305,206,566,813,503,116,940,127,353,621,57,779,595,744,755,530,701,862,760,443,293,768,156,281,960,504,327,979,55,790,545,953,830,759,667,485,861,63,485,55,898,581,520,49,99,651,940,945,685,621,728,487,650,530,934,378,522,522,522,996,534,522,739,534,378,543,94,602,390,948,692,692,41,41,768,412,982,692,692,774,176,791,526,497,57,940,542,685,694,916,813,890,357,193,430,863,929,412,412,903,140,763,465,707,569,925,859,985,24,411,835,298,293,791,837,460,182,296,137,474,809,111,376,1021,111,490,111,938,542,578,477,506,57,385,300,873,240,104,667,204,515,834,24,125,113,980,111,997,859,997,376,193,490,824,511,799,719,575,451,575,251,222,630,429,920,788,300,993,641,154,816,940,618,130,940,462,823,955,1001,569,508,632,2,903,399,333,709,489,726,932,725,777,970,843,717,940,211,534,274,161,392,103,31,462,813,985,638,213,352,219,236,381,287,111,87,818,953,112,336,980,1016,72,960,426,238,60,9,487,665,129,24,24,162,312,411,111,157,473,466,222,940,341,55,457,712,179,451,111,831,918,826,814,940,30,468,240,207,389,923,186,95,300,876,679,576,543,582,111,227,312,112,545,747,378,165,158,610,601,425,238,704,630,124,644,949,982,297,868,569,24,57,465,24,859,111,24,752,775,24,647,465,495,57,24,57,227,907,296,581,843,1013,514,555,319,937,347,478,186,684,15,241,534,369,381,846,578,314,711,814,435,41,986,673,991],
[485,748,562,562,485,380,834,997,78,963,755,142,978,135,362,421,217,79,530,1012,972,946,127,587,838,818,456,548,424,479,944,650,694,447,391,616,938,908,206,259,998,292,818,128,353,273,566,796,333,146,110,986,571,451,166,229,421,300,911,689,329,145,287,273,542,808,301,491,0,278,825,442,0,100,818,826,66,904,642,566,135,305,999,993,905,485,755,782,365,977,485,1015,570,1002,755,169,967,36,721,1019,273,931,273,166,216,31,346,946,32,290,362,828,464,748,782,1002,1015,755,1014,100,315,777,549,177,882,110,603,975,531,608,67,1011,950,465,368,416,798,941,635,602,553,300,200,644,498,325,786,734,342,222,403,1,716,175,899,273,40,333,999,74,54,644,408,976,407,631,577,338,435,612,333,273,162,709,882,555,384,995,173,459,442,72,72,200,72,711,219,282,716,442,431,801,976,130,622,72,582,384,516,772,0,440,1001,249,1,953,65,945,438,249,511,561,205,507,821,998,427,746,290,544,426,693,999,190,214,167,219,534,166,325,975,414,326,326,268,679,991,418,868,445,632,160,380,890,346,315,806,258,806,486,326,797,471,18,790,33,66,63,66,224,38,599,599,110,801,761,18,936,230,253,171,393,774,887,887,403,466,495,524,261,666,256,687,759,263,713,185,454,242,988,185,161,911,430,86,550,439,327,527,671,782,383,916,590,315,806,583,465,785,321,315,421,856,66,352,0,634,540,362,948,185,16,224,372,694,259,648,87,733,659,603,67,269,901,66,566,173,705,746,566,911,10,743,860,78,782,1002,755,389,175],
[948,948,975,975,948,322,672,639,902,55,916,439,498,389,407,682,451,401,386,440,499,348,736,891,603,762,783,407,886,76,543,699,137,458,639,253,63,475,55,436,502,888,542,131,524,167,738,131,907,29,378,545,227,382,478,399,218,872,917,202,330,2,371,264,667,355,1016,768,590,408,463,542,214,202,715,891,840,297,509,689,290,439,672,714,528,940,1019,534,975,475,1019,835,975,558,975,981,330,635,96,858,606,627,367,191,191,669,40,873,359,267,701,426,210,1012,899,975,475,1012,610,6,300,749,231,616,877,631,720,574,551,398,503,789,684,664,390,277,150,990,823,190,971,903,175,863,316,965,988,988,800,612,336,506,242,847,389,939,415,202,83,317,2,153,365,363,57,2,891,965,300,754,763,426,555,621,303,415,367,902,829,741,119,380,902,25,884,439,822,49,76,760,566,316,249,555,774,955,834,309,859,173,935,812,682,586,141,606,197,131,644,631,913,586,202,117,810,884,76,592,754,531,586,925,649,583,145,816,821,283,871,1017,316,377,646,339,201,76,780,76,976,217,38,598,977,617,825,833,49,231,749,749,633,205,231,271,50,249,684,555,982,526,895,288,22,57,722,996,260,1018,110,833,644,738,648,468,798,297,769,282,197,402,465,510,194,930,182,909,749,986,187,187,917,38,38,985,985,988,815,878,814,459,237,768,781,649,683,749,934,729,463,181,625,231,917,96,499,839,720,439,842,205,808,338,617,681,326,446,905,346,647,533,49,728,147,432,846,536,586,611,49,879,872,893,859,859,961,989,975,701,495,65],
]
resp = []
"""
resp = [
[922,738,461,341,341,10,416,416,416,416,346,346,346,346,346,484,484,484,484,484,484,333,442,442,359,359,359,459,459,975,975,626,626,626,626,626,610,359,359,359,359,359,359,359,359,359,610,610,442,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,638,638,638,638,975,975,672,875,63,144],
[993,700,384,213,794,10,305,778,58,225,118,260,768,768,260,474,903,732,70,992,447,70,1000,665,848,379,485,934,181,795,438,298,688,324,934,756,395,795,110,328,343,172,768,871,593,355,396,783,24,24,911,20,27,562,697,616,668,27,27,755,20,505,248,79,822,461,197,156,27,492,151,1013,669,669,562],
[626,989,936,488,511,624,997,112,112,648,210,650,563,650,41,41,490,920,977,986,920,927,131,167,167,968,346,168,167,168,120,355,766,599,712,390,558,810,948,332,332,867,994,346,955,392,920,452,576,346,52,254,52,307,897,307,968,920,167,563,167,167,167,968,167,488,968,488,1001,938,563,741,432,566,758],
[916,874,798,212,496,751,620,616,982,745,975,890,890,141,141,321,321,214,899,42,151,722,310,971,774,35,627,995,27,43,248,248,595,774,942,352,810,35,384,340,654,639,89,214,737,197,657,45,622,321,337,19,483,679,938,938,682,938,938,141,938,310,114,724,116,327,372,607,607,310,204,713,762,853,853],
[528,222,992,727,536,191,202,483,306,568,533,577,398,533,202,24,753,753,739,739,643,513,4,324,369,66,447,201,66,802,66,957,665,526,602,749,483,447,193,853,531,201,201,71,888,202,66,66,650,228,533,102,639,513,533,531,533,471,344,566,201,639,471,639,732,594,464,308,116,533,116,174,959,621,539],
[692,632,478,375,910,857,775,503,503,193,717,548,344,717,55,808,162,112,112,112,543,582,847,712,691,679,427,940,369,475,153,526,729,269,323,721,526,211,191,192,685,844,731,813,914,545,582,712,925,916,375,111,340,162,844,940,844,162,844,990,111,491,232,582,491,582,618,121,1020,664,670,254,315,438,723],
[365,908,896,819,206,153,515,471,75,79,664,145,145,801,135,321,79,216,233,223,79,66,724,517,135,474,818,818,105,892,971,337,818,19,932,981,469,135,163,75,135,818,999,555,135,710,256,105,590,31,539,1003,517,130,445,40,549,130,859,385,1003,1003,549,33,286,932,329,774,321,664,686,16,834,703,290],
[899,237,832,748,425,121,460,872,391,586,857,215,306,76,306,554,187,57,482,406,802,555,710,895,448,517,506,316,18,772,779,697,855,1005,792,96,402,96,517,775,506,938,114,986,986,503,749,984,524,527,506,749,463,490,188,374,506,49,537,188,494,900,526,524,524,500,500,345,630,338,982,761,700,598,749],
]
"""
# name, (start, end), classifier, src_name
io_map = {
'text': [(0, 256), 9, "text_emb.weight"],
'rvq_l': [(256, 264), -1, "rvq_l_emb.weight"],
'lang': [(264, 270), -1, "langs_emb.weight"],
'task': [(270, 279), -1, "tasks_emb.weight"],
'len': [(279, 290), 10, "len_emb.weight"],
'tone': [(290, 291), -1, "tones_emb.weight"],
'sep': [(291, 292), -1, "sep"],
'prom|0': [(292, 1316), -1, "proms_emb.embeddings.0.weight"],
'prom|1': [(1316, 2340), -1, "proms_emb.embeddings.1.weight"],
'prom|2': [(2340, 3364), -1, "proms_emb.embeddings.2.weight"],
'prom|3': [(3364, 4388), -1, "proms_emb.embeddings.3.weight"],
'prom|4': [(4388, 5412), -1, "proms_emb.embeddings.4.weight"],
'prom|5': [(5412, 6436), -1, "proms_emb.embeddings.5.weight"],
'prom|6': [(6436, 7460), -1, "proms_emb.embeddings.6.weight"],
'prom|7': [(7460, 8484), -1, "proms_emb.embeddings.7.weight"],
'resp|AR:0:0': [(8484, 9509), 0, "resps_emb.embeddings.0.weight"],
'resp|NAR:0:1': [(9509, 10533), 1, "resps_emb.embeddings.1.weight"],
'resp|NAR:1:2': [(10533, 11557), 2, "resps_emb.embeddings.2.weight"],
'resp|NAR:2:3': [(11557, 12581), 3, "resps_emb.embeddings.3.weight"],
'resp|NAR:3:4': [(12581, 13605), 4, "resps_emb.embeddings.4.weight"],
'resp|NAR:4:5': [(13605, 14629), 5, "resps_emb.embeddings.5.weight"],
'resp|NAR:5:6': [(14629, 15653), 6, "resps_emb.embeddings.6.weight"],
'resp|NAR:6:7': [(15653, 16677), 7, "resps_emb.embeddings.7.weight"],
'resp|NAR:0:0': [(16677, 17702), 8, "resps_emb.embeddings.8.weight"],
}
mode_lvl_map = {
'AR:0:0': 0,
'NAR:0:1': 1,
'NAR:1:2': 2,
'NAR:2:3': 3,
'NAR:3:4': 4,
'NAR:4:5': 5,
'NAR:5:6': 6,
'NAR:6:7': 7,
'NAR:0:0': 0,
'len': 0,
}
embds = {}
heads = {}
n_embd = 1024
with torch.no_grad():
for k, v in io_map.items():
start, end = v[0]
classifier_idx = v[1]
embd_name = v[2]
if is_from_pretrained:
n_vocab = end - start
embds[k] = torch.nn.Embedding( n_vocab, n_embd ).to(model.embed_tokens.weight)
embds[k].weight[:] = model.embed_tokens.weight[start:end, :]
if classifier_idx >= 0:
# NAR:0:0 does not have a masked token output
if k == "resp|NAR:0:0":
end -= 1
n_vocab -= 1
heads[k] = torch.nn.Linear( n_embd, n_vocab, bias=False ).to(hf_model.lm_head.weight)
heads[k].weight[:] = hf_model.lm_head.weight[start:end, :]
else:
embd_weight = state_dict[embd_name].unsqueeze(0) if state_dict[embd_name].dim() == 1 else state_dict[embd_name]
embds[k] = torch.nn.Embedding( embd_weight.shape[0], embd_weight.shape[1] ).to(device=device, dtype=dtype)
embds[k].load_state_dict({ "weight": embd_weight })
if classifier_idx >= 0:
head_weight = state_dict[f'classifiers.proj.{classifier_idx}.weight']
heads[k] = torch.nn.Linear( head_weight.shape[1], head_weight.shape[0], bias=False ).to(device=device, dtype=dtype)
heads[k].load_state_dict({ "weight": head_weight })
def create_inputs( phn, prom, lang=0, seq=None, mode="AR:0:0" ):
rvq_l = mode_lvl_map[mode]
inputs = torch.tensor([])
pos_ids = torch.tensor([])
attn_mask = torch.tensor([])
seqs = []
phn = torch.tensor(phn, device=device,dtype=torch.int32)
prom = torch.tensor(prom, device=device,dtype=torch.int32)
lang = torch.tensor([lang], device=device,dtype=torch.int32)
rvq_l = torch.tensor([rvq_l], device=device,dtype=torch.int32)
zero = torch.tensor([0], device=device,dtype=torch.int32)
if mode == "len":
seq = zero if not seq else torch.concat([zero, torch.tensor(seq, device=device, dtype=torch.int32)])
elif seq:
seq = torch.tensor(seq, device=device,dtype=torch.int32)
seq = seq[:rvq_l, :] if rvq_l > 0 else seq
sep_embd = embds["sep"](zero)
phn_embd = embds["text"](phn)
rvq_l_embd = embds["rvq_l"](rvq_l)
lang_embd = embds["lang"](lang)
prom_embd = torch.zeros(prom.shape[-1], n_embd, device=device, dtype=dtype)
seq_embd = None
for i, p in enumerate(prom):
if i > rvq_l:
break
prom_embd += embds[f"prom|{i}"](p)
if seq is not None:
if mode == "len":
seq_embd = embds["len"](seq)
elif mode == "AR:0:0":
seq_embd = embds["resp|AR:0:0"](seq)
else:
seq_embd = torch.zeros(seq.shape[-1], n_embd, device=device, dtype=dtype)
for i, r in enumerate(seq):
seq_embd += embds[f"resp|NAR:{i}:{i+1}"](r)
seqs.append(torch.concat([phn_embd, sep_embd]))
seqs.append(torch.concat([lang_embd, sep_embd]))
seqs.append(torch.concat([rvq_l_embd, sep_embd]))
seqs.append(torch.concat([prom_embd, sep_embd]))
if seq_embd is not None:
seqs.append(seq_embd)
inputs = torch.concat(seqs)
pos_ids = torch.tensor([ i for seq in seqs for i, _ in enumerate(seq) ], device=device, dtype=torch.int32)
attn_mask = torch.tensor([ True for seq in seqs for i, _ in enumerate(seq) ], device=device, dtype=torch.bool)
return inputs, pos_ids, attn_mask
def generate( phn, prom, sequence=[], mode="resp|AR:0:0", max_tokens = 75 * 4, temperature = 1.0 ):
lm_head = heads[mode]
model._update_causal_mask = model._original_update_causal_mask
n_outputs = 1
stop_token = 1024
if mode == "len":
temperature = 0.0
max_tokens = 5
stop_token = 10
elif mode != "resp|AR:0:0":
temperature = 0.0
max_tokens = len(sequence)+1
n_outputs = len(sequence[0])
model._update_causal_mask = model._update_noncausal_mask
while len(sequence) < max_tokens:
inputs, pos_ids, attn_mask = create_inputs( phn, prom, seq=sequence, mode=mode.split("|")[-1] )
out = model(inputs_embeds=inputs.unsqueeze(0), position_ids=pos_ids.unsqueeze(0), attention_mask=attn_mask.unsqueeze(0))
logits = lm_head(out[0]).float()
logits = logits[0, -n_outputs:, :]
t = Categorical(logits=logits / temperature).sample() if temperature > 0 else logits.argmax(dim=-1)
if n_outputs > 1:
sequence.append([ _.item() for _ in t ])
break
else:
t = t[0]
if stop_token in t:
break
sequence.append(t.item())
return sequence
# check embds
if False:
inputs, pos_ids, attn_mask = create_inputs( phn, prom, mode="len" )
flattened = [ sum(embd).item() for embd in inputs ]
for i, embd in enumerate( flattened ):
print(f'{i}: ', pos_ids[i].item(), "\t", embd )
# test len inferencing
print( "len:", generate( phn, prom, mode="len" ) )
# test ar ouptut
if resp:
resp = [ resp[0] ]
else:
resp = [ generate( phn, prom ) ]
print( "AR:", resp )
# test nar ouptut
for i in range(1, 8):
resp = generate( phn, prom, sequence=resp, mode=f"resp|NAR:{i-1}:{i}" )
print( f"NAR:{i-1}:{i}: ", resp[-1] )
decode_to_file( torch.tensor(resp, dtype=torch.int16, device=device).t(), "./data/test.wav" )