Commit Graph

650 Commits

Author SHA1 Message Date
mrq
9da630f73a swap order of demo entries, as the model prioritizes adhering to the speaker prompt more (instead of trying to match the ground truth magically) 2024-09-25 23:31:24 -05:00
mrq
e84d466261 vall_e.plot tweaks 2024-09-24 20:05:10 -05:00
mrq
c5e9142863 added option to retokenize phonemes for hdf5 (to save having to remake my hdf5 file) 2024-09-21 13:08:01 -05:00
mrq
536c11c4ac actually validated and fixed sampling similar utterances for the prompt (hopefully nothing else is needed) 2024-09-21 12:59:51 -05:00
mrq
d31f27119a regex replace out the (lang) markers in espeak, updated tokenizer vocab as lazily as possible to not have unk tokens 2024-09-21 12:29:28 -05:00
mrq
769f67dcfe actually fix validation of phonemes in the symmap 2024-09-21 12:19:34 -05:00
mrq
c8d4716a9f ugh 2024-09-18 21:40:57 -05:00
mrq
fe241f6a99 support for wildcard in training/validation/noise dataset array (to-do: a better way to query between metadata folder and data folder) 2024-09-18 21:34:43 -05:00
mrq
b5bec0c9ce oops, turns out these are not split by speaker names already........ (also added sampling the dataset in the webui for easy viewing) 2024-09-18 20:19:46 -05:00
mrq
fa9d3f6c06 lang fixes / reworked phoneme symmap validation 2024-09-18 19:36:03 -05:00
mrq
84647f588a more tweaks 2024-09-18 16:43:57 -05:00
mrq
ebac1db16c maybe final tweaks, I really needed to unify my json read/write and orjson is proven to be fast enough for me to try and rely on it more 2024-09-17 22:57:04 -05:00
mrq
6ceed866b5 *faster* 2024-09-17 22:44:36 -05:00
mrq
f00283440c faster 2024-09-17 22:26:31 -05:00
mrq
be22b65300 solved my problem 2024-09-17 21:58:44 -05:00
mrq
8f41d1b324 more tweaks 2024-09-17 16:26:30 -05:00
mrq
804ddb5182 optimizations (6 hours to do cosine similarities on a speaker set of just 17k utterances................) 2024-09-17 15:51:45 -05:00
mrq
a9fbe81f98 oops 2024-09-17 15:25:12 -05:00
mrq
c440c4fe7e relegated processing similarity data into vall_e.emb.similarity since it's easier, seems to work? 2024-09-17 14:37:21 -05:00
mrq
56f25f7a9b more stuff for similar-speaker prompt sampling (to-do: actually test if this works...) 2024-09-16 23:10:29 -05:00
mrq
69f140ba45 fix oversight with phonemizing french because espeak defines french as fr-fr instead of fr (even though spain spanish is es and not es-sp or some shit, but portugal portuguese is pt-pt) 2024-09-13 12:53:36 -05:00
mrq
4f3c7a37c8 also do text similarities (dont know what use I'll have for this) 2024-09-10 16:45:59 -05:00
mrq
1c615a0f52 helper script (vall_e.emb.similar) to figure out the best way to compute similarity scores for audio (iunno how to go about it desu) 2024-09-10 16:34:23 -05:00
mrq
d059f6f56d added helper script to process Emilia (amphion/Emilia-Dataset), clean up espeak phonemes for non-English transcriptions with English words (because for some reason espeak injects (en){word}(lang) markers and it's annoying) 2024-09-09 09:57:32 -05:00
mrq
31e8b7edb8 tweaks and fixes for lora stuffs 2024-09-08 18:05:21 -05:00
mrq
54203c059d validated rep pen for STT (sometimes needed to wrangle the model) 2024-09-08 08:30:30 -05:00
mrq
6a967f91b9 oops 2024-09-07 22:13:49 -05:00
mrq
5d66a7db52 webui cleanup, more tweaks, default to safetensors in config 2024-09-07 21:45:05 -05:00
mrq
a6ad0577b8 cleanup the resultant text from STT 2024-09-06 18:44:25 -05:00
mrq
fa93061b3e more fixes, moved sampler state dict to a better place, eval works again 2024-09-06 16:59:56 -05:00
mrq
4bd9bb39c8 webui for STT (still need to bake the model to handle it better, a few hours so far has it generate what looks like a normal transcription but does not correlate to the audio right now) 2024-09-06 15:13:04 -05:00
mrq
d33a906119 cleanup for AR_NAR inferencing to allow both TTS and STT tasks simultaneously (need to have training eval do this to though) 2024-09-06 14:30:12 -05:00
mrq
341e19162b fixes, again 2024-09-06 11:41:41 -05:00
mrq
94cf81d38c tweak 2024-09-05 23:21:18 -05:00
mrq
413097f5f7 fixes 2024-09-05 21:42:59 -05:00
mrq
54547b74d8 experimental implementation of STT (need to actually test on a model, test trainer seems to work) 2024-09-05 20:43:20 -05:00
mrq
d319d33368 haha 2024-09-04 14:52:26 -05:00
mrq
619369236b ugh 2024-08-30 21:10:57 -05:00
mrq
168e203942 ugh 2024-08-30 14:39:07 -05:00
mrq
685f4faec0 ugh 2024-08-30 10:46:26 -05:00
mrq
32287710a2 moved prints to use logger, edited readme (fused_attn doesnt seem stable for training) 2024-08-29 13:27:16 -05:00
mrq
d423bc03c2 fixed attentions for MoE 2024-08-27 17:02:42 -05:00
mrq
b7b99a25f1 added ability to specify attention backend for CLI and webui (because im tired of editing the yaml) 2024-08-26 19:33:51 -05:00
mrq
0d706ec6a1 added fused_attn (triton-based fused attention) and simply just query for flash_attn under rocm 2024-08-26 19:13:34 -05:00
mrq
6b0891448c pain (some shit to try and get some flash attention for ROCm (gfx1100) through triton fused attention but no good) 2024-08-25 20:07:27 -05:00
mrq
40e1799adc fixed xformers and flash_attn to actually work now 2024-08-19 01:03:35 -05:00
mrq
29c35528e5 the sooner I accept there's no FA for V100s the sooner I'll go to bed 2024-08-18 23:54:33 -05:00
mrq
d636edd3a2 added flash_attn LlamaAttention (including flash_attn==1.0.9) 2024-08-18 20:51:14 -05:00
mrq
054d28573a my DAC dataset again managed to only have some utterances with only 8 of 9 RVQ levels, this fixes an oversight from it 2024-08-09 21:18:01 -05:00
mrq
2a1794c084 ughghghhhh 2024-08-09 21:15:01 -05:00
mrq
ed373957e2 maybe not 2024-08-09 11:38:08 -05:00
mrq
c658a7b440 make loss scaling opt-in rather than automatically determined (because it seems a DAC-based model really doesnt like loss scaling) 2024-08-09 10:51:36 -05:00
mrq
d04f6911b4 oops 2024-08-08 19:38:55 -05:00
mrq
0aa59e6f3f uncommented block that writes the metadata on HDF5 creation 2024-08-08 19:21:29 -05:00
mrq
79a6781c9e fix vall_e.data --action=hdf5 actually transcribing because past me completely forgot it tried to already put the transcribe/process dataset scripts inside the module before 2024-08-08 07:51:42 -05:00
mrq
949339a3fa do not include SDPA attention if there's no available SDPA backends 2024-08-06 20:42:39 -05:00
mrq
613024ec0d ugh 2024-08-06 20:35:15 -05:00
mrq
eac353cd0b busy work and cleanup while I wait for 1TB of audio to quantize... again. 2024-08-06 20:23:33 -05:00
mrq
f284c7ea9c do mixed-precision for AMP inside the compress function itself, because the loudness function gripes when using a float16 (non-power of 2 lengths) or bfloat16 (something about views for bfloat16) 2024-08-06 15:08:37 -05:00
mrq
b6ba2cc8e7 tweaked vall_e.emb.process to instead process audio one file at a time instead of all the files for a given speaker to avoid OOMing on less-memory-filled systems with --low-memory 2024-08-06 14:24:40 -05:00
mrq
9710b06b74 tweaks and things 2024-08-06 08:17:25 -05:00
mrq
134dac8c2b re-adapted process_libritts.py to a 'better' way (better because it processed without needing to shuffle a bunch of things and adapt to cope or something) 2024-08-05 20:34:58 -05:00
mrq
3f73fcca29 oops 2024-08-05 20:12:13 -05:00
mrq
597441e48b moved transcribe and process dataset scripts to vall_e/emb within the module itself, argparse-ified transcription script 2024-08-05 19:40:50 -05:00
mrq
7cdfa3dc0c updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup 2024-08-05 15:59:25 -05:00
mrq
debcc93e7e add adapted MixtralAttention for when I make a bad decision to actually train a MoE 2024-08-04 22:03:22 -05:00
mrq
10aaf840e7 added export option to convert Llama to MixtralMoE for another dumb experiment 2024-08-04 20:25:06 -05:00
mrq
3a65cc4b22 fix issue with sft and shared tensors... 2024-08-04 19:56:21 -05:00
mrq
23f3b56fda oops 2024-08-04 08:18:57 -05:00
mrq
d19f93a2c0 documentation update 2024-08-04 00:14:49 -05:00
mrq
2cb465018b implicitly load either normal pickled weights or safetensors on loading the model 2024-08-03 23:34:18 -05:00
mrq
c09133d00f added safetensors support (with metadata) and feed whatever torch.load/torch.save into it 2024-08-03 23:15:20 -05:00
mrq
6a733eb2ed changed torch.Tensor().to(device, dtype) to just torch.tensor(..., device, dtype) because it's been bothering my autism that I'm creating tensors then converting rather than creating with the right device/dtype, some 'optimization' to compile the model but it doesnt seem to do anything useful 2024-08-03 22:10:21 -05:00
mrq
ab673e0426 add cap for NAR-len training, to avoid any weird cases in early training where it'll just mess up and generate long lengths 2024-08-03 21:00:32 -05:00
mrq
4d2b88b164 throw exception if training, but no model is set to train (because i ran into this wondering what the hell was happening) 2024-08-03 20:51:23 -05:00
mrq
d0a5c7eca2 more coping with the NAR len 2024-08-03 20:23:36 -05:00
mrq
11fa3da665 some cleanup, fixed the wrapper attention to explicitly use other sdpa backends 2024-08-03 19:51:00 -05:00
mrq
9564ecda43 wrapper attention class for other sdpa backends + xformers seems to have broke... 2024-08-03 15:12:11 -05:00
mrq
9e1989be1b tweaked initial NAR pass's initial token embeddings to use a different value, or osmething 2024-08-03 09:01:37 -05:00
mrq
26f74c5739 somehow fixed non-unified position IDs for the NAR-len 2024-08-03 08:43:42 -05:00
mrq
66407e5bdb tweaks for the NAR-len model, maybe 2024-08-03 08:40:39 -05:00
mrq
97c5241bef fixes, throw an exception when using NAR only model with non-unified position IDs, since for some reason it outputs garbage for the NAR 2024-08-02 22:25:49 -05:00
mrq
4456d3172b that's what I get for testing without hdf5 on my previous machine.... 2024-08-02 20:44:01 -05:00
mrq
7a77978096 oversight with using resize_modules 2024-08-02 20:28:49 -05:00
mrq
808a79ebaf oops 2024-08-01 22:56:04 -05:00
mrq
443422ecb5 ugh, finally got some form of offloading working (need to test if it works on different GPUs, but GPU and CPU offloading seems to work in the test trainer) 2024-08-01 22:43:39 -05:00
mrq
c9ec6b28ef it actually wasn't working because Engines.__init__() automatically moves the entire module to the requested device, which was being called after offloading the model in the test trainer (and it seems I cant do it without injecting a bunch of shit in modeling_llama.py) 2024-08-01 20:56:28 -05:00
mrq
b4c895114c naive model offloading support (handles automatically splitting parts of the model to requested device per memory constraints, either inferred or requested in the yaml, input tensors are automatically migrated to the right device, it SEEMS to work for training under the test trainer when split between GPU and CPU) (this was specifically only because that Flux imagegen model released so I can test it there) 2024-08-01 20:12:06 -05:00
mrq
387358bc8a fixes for the NAR-len model, and documentation some config options, and a better way to handle resizing modules on state_dict load 2024-07-31 20:35:09 -05:00
mrq
52d13b321f I rather have it default to non-strict loading instead so I can clean up YAMLs 2024-07-30 22:24:38 -05:00
mrq
d7c6be6f78 fix weird regression in handling checkpoints when backend is local, but deepspeed checkpoints are in (it was handled with LoRA loading but not real loading...) 2024-07-30 22:15:56 -05:00
mrq
07f8e2ad06 added option to set the causal size (how many tokens to sample per AR step), but requires the model to be trained for this (which explains why recurrent chunk sampling just doesn't work for the retnet tests, obvious in hindsight) 2024-07-30 20:53:51 -05:00
mrq
ebf848d249 possible speedup for samplers that require a list of previous tokens (the DRY sampler made me realize that I should copy the tolist() thing from the rep pen sampler for everything else) 2024-07-29 20:23:26 -05:00
mrq
55b0121b1a trying (and failing) to nail a weird regression in fancier attentions 2024-07-29 19:53:37 -05:00
mrq
c2f5b916fc added what I think is DRY sampling 2024-07-29 19:15:07 -05:00
mrq
ce8bb1e4f7 sanity cleanups with weird off-by-one-ness, cleaned up and validated vall_e.models.experimental works again 2024-07-27 15:36:05 -05:00
mrq
06e948aec1 suppress warning on exit about distributed not being cleaned up (because I updated my system) 2024-07-25 16:50:47 -05:00
mrq
682e4387dc oops (fixed proms being erased from a config oversight) 2024-07-25 12:39:57 -05:00
mrq
1acb0e9c84 added experimental training setting to perform token dropout to MAYBE compensate for errors from the preceding RVQ level (two types: token error offset, token dropout embedding replace) 2024-07-24 19:35:17 -05:00
mrq
611a1c4bdc might help 2024-07-22 20:57:01 -05:00
mrq
188d116222 some weird fixes for an equally weird regression with LoRA loading 2024-07-22 20:47:24 -05:00
mrq
e33c4b0cb1 oops 2024-07-22 19:38:39 -05:00
mrq
75b04686f8 added prom-less training / inferencing, some other things 2024-07-22 19:36:07 -05:00
mrq
491ae2a684 some insanity for sanity checks (some phonemes from phonemizing japanese are not in my tokenizer...) 2024-07-22 00:30:40 -05:00
mrq
ad024f400f actually pass language into dataset process script, fix coercing japanese into hiragana because espeak does not like kanji 2024-07-21 23:21:37 -05:00
mrq
3e5ca3a201 more demo page tweaks 2024-07-21 19:31:13 -05:00
mrq
7366f36f81 oops 2024-07-21 19:17:25 -05:00
mrq
e19aa643a6 cleaned up demo page creation, added option to pass in RVQ level sampling distribution for training 2024-07-21 19:12:03 -05:00
mrq
ba7ee8c0ee added demo link to readme 2024-07-19 21:22:30 -05:00
mrq
9ec88d9444 validated passing URI path for assets instead of base64 encoding them 2024-07-19 21:07:17 -05:00
mrq
d87b492295 added rudimentary demo page creator (currently just embeds base64 wavs into the page, need to test not doing that) 2024-07-19 20:49:40 -05:00
mrq
d53038a9e4 actually have split classifiers working 2024-07-19 15:33:31 -05:00
mrq
692d09f9c1 eval/validation fix for SpeechX tasks 2024-07-19 09:16:37 -05:00
mrq
28a674e0f1 fixes... 2024-07-18 23:25:32 -05:00
mrq
39f961abcd test trainer (vall_e.models.ar_nar) tests some SpeechX features 2024-07-18 18:46:45 -05:00
mrq
83a0954f85 fixes for re-introducing SpeechX tasks (need to actually validate if these all do the right things) 2024-07-18 17:16:32 -05:00
mrq
bccbb77a1a added option to either naively concat codes to concat audio waveforms (prior behavior) or to decode => concat => encode instead (although this only currently happens for prom sampling if an utternace is too small) 2024-07-18 16:48:41 -05:00
mrq
97e768601c re-introducing SpeechX tasks (need to validate them all, everything works with base tts anyways) 2024-07-18 16:16:14 -05:00
mrq
c2b8035e74 oops, kept forgetting to actually pass in lang/tone tokens (despite not really using these at the moment) 2024-07-18 14:18:34 -05:00
mrq
22fe53508c added experimental disjointed position IDs (because I *think* this might help because technically a sequence is made up of several parts, and the position embeddings shouldn't be unified) 2024-07-16 19:52:41 -05:00
mrq
fe0f235335 mechanism to store the model config inside the weights and load them, some other things to allow LoRA training on the RetNet (gradient checkpointing will gripe about inputs not having require_grad and nothing seems to remedy it) 2024-07-16 18:23:13 -05:00
mrq
3acc54df22 allow loading a different model within the web ui (apparently I did not have the web UI in the documentation) 2024-07-15 19:59:48 -05:00
mrq
7b210d9738 sanity cleanup 2024-07-04 15:58:08 -05:00
mrq
1ecf2793f4 (commented-out) support for facebookresearch/AudioDec, but support really didn't wow me (so I commented it out until I figure out why my output audio is super crusty with AudioDec) 2024-07-04 15:40:51 -05:00
mrq
f770467eb3 stuff 2024-07-01 18:13:29 -05:00
mrq
312a8e3ead add shuffle to samplers that can support it 2024-06-30 11:36:46 -05:00
mrq
396af541c5 ugh 2024-06-30 11:11:58 -05:00
mrq
dced595391 more cleanup 2024-06-30 11:00:12 -05:00
mrq
bc2a6fa756 sanity cleanup: moved experimental features under its own thing 2024-06-30 10:37:33 -05:00
mrq
b21f74a5c5 added summing of external embeddings (at this point i dont think any amount of cope bandaids will get DAC to train nicely, I think the RVQ levels the NAR tends add too much noise if they're not accurate) 2024-06-29 23:42:30 -05:00
mrq
793ccb16fb ugh 2024-06-29 22:14:35 -05:00
mrq
2808f881c8 cleaned up subjugated audio embedding into a flag, flag can also have it include the original, underlying embedding as well (it seems to do better when set to inclusive) 2024-06-29 21:46:35 -05:00
mrq
ec5eaebcbc experimental method of using DACs quantizer ""embeddings"" to see if it helps with model quality 2024-06-29 19:46:11 -05:00
mrq
a8718d35a4 nasty bandaid because some of my DAC dataset only has 8 RVQ levels instead of the full 9 2024-06-29 10:16:37 -05:00
mrq
c4dd523b6f change from chunk-slicing paths for distributed dataloader to instead interleave 2024-06-29 10:10:35 -05:00
mrq
dd40463803 limit eval size because the training batch size seems to be used for the eval dataloader, somehow (bandaid) 2024-06-29 09:11:28 -05:00
mrq
591d3ac848 have eval dataloader use eval batch size for batchedordersampler 2024-06-28 22:44:00 -05:00
mrq
1a392b69f6 local training backend should be a bit more aware of variable batch sizes, maybe 2024-06-28 22:39:05 -05:00
mrq
83075c1505 sort duration buckets to ensure that paths sorted-by-duration are actually sorted by duration (because i didnt know that python dicts can have non-strings as keys), added batching samples based on total duration to ensure best training throughput 2024-06-28 22:28:54 -05:00
mrq
8fffb94964 backport fix from tortoise_tts with local trainer + loading state when training lora 2024-06-25 13:41:29 -05:00
mrq
62a53eed64 fixed deducing tokenizer path, added option to default to naive tokenizer (for old models, like ar+nar-retnet-8) 2024-06-18 22:11:14 -05:00
mrq
8a986eb480 load exported LoRA weights if exists (to-do: make a better LoRA loading mechanism) 2024-06-18 21:45:46 -05:00
mrq
2bfe786ebd ban stop token for NAR levels (because sometimes it gets sampled and causes problems) 2024-06-17 22:14:43 -05:00
mrq
7cfb78fa64 enable LoRA for targetted RVQ levels (to experiment with, seems to help) 2024-06-17 21:45:03 -05:00
mrq
7047fcc6e2 actually make deepspeed work with LoRAs 2024-06-17 13:55:37 -05:00
mrq
1d159b1476 updated export routine to split LoRA weights from the state dict (should work with deepspeed) 2024-06-17 13:28:18 -05:00
mrq
726a4b613f naive, rudimentary DeepSpeed support (just live with the LoRA weights living with the original weights, they can be split later) 2024-06-17 13:17:24 -05:00
mrq
bd0bc10ec0 added LoRA policy to decide what layer of the model gets adapted based on simple inclusion/exclusion terms 2024-06-17 13:05:06 -05:00
mrq
be051d9544 added other LoRA method using parametrization rather than linear injection 2024-06-17 09:58:34 -05:00
mrq
45a39fb79f very rudimentary lora support (no deepspeed support, tested training and saving but not loading yet) 2024-06-17 00:09:16 -05:00
mrq
19410a919e ugh 2024-06-15 12:29:03 -05:00
mrq
d343bde09b residual_in_fp32=False for mamba arch backends because it breaks the classifier (output projection / lm head / what-have-you) under AMP 2024-06-15 12:08:03 -05:00
mrq
ccb14c06ef mamba2-hf using vasqu/mamba2-torch because it lets me use mamba2 without triton ops (training with my 4xV100s are not happy with mamba2 because of triton) 2024-06-14 19:42:17 -05:00
mrq
31f71fa134 sampler update (some brainworm just never actually had a sampler for sample_type=path) 2024-06-14 16:55:40 -05:00
mrq
b3b67f34ac added option to sort paths by durations to better group equally lengthed sequences together (and there was maybe a logic error from creating the samplers and then interleave-reordering paths, desyncing them, maybe) 2024-06-13 22:37:34 -05:00
mrq
83eab4fa59 actually going for the suggested "2x layers, no intermediate scaling" is wrong for VALL-E, directly copying the normal transformer structure fixes mamba2 performance in the test trainer 2024-06-13 20:08:22 -05:00
mrq
26da24fd8d mamba updated to fix that pesky NaN error during training 2024-06-13 12:38:33 -05:00
mrq
bcf3910a17 the NAR only dream is dead (it just won't work) 2024-06-12 19:49:47 -05:00
mrq
a9353cf9fa ugh 2024-06-12 00:14:29 -05:00
mrq
cca542a4c0 ugh 2024-06-11 23:59:28 -05:00
mrq
65a8960305 option to split classifier per-level instead of sharing one (at this point I'm just scrambling to try and cope with training a DAC model, the NAR is being a pain) 2024-06-11 22:28:59 -05:00
mrq
a7a6e0ac76 validated that inferencing works, changed some defaults (NAR benefits from greedy sampling) 2024-06-09 17:11:38 -05:00
mrq
234f9efc6e ugh 2024-06-09 11:39:43 -05:00
mrq
132a02c48b sanity cleanup, backup config yaml for each log file 2024-06-09 11:22:52 -05:00
mrq
8d92dac829 forgot I renamed this 2024-06-09 11:12:30 -05:00
mrq
80f9530840 ugh 2024-06-09 01:43:44 -05:00
mrq
5c732b72ee ugh 2024-06-08 20:34:00 -05:00
mrq
8d068fa3f9 reticulating splines 2024-06-08 20:30:15 -05:00
mrq
ead3e2f0cb ugh 2024-06-08 16:14:57 -05:00
mrq
b072f9b96b fixes 2024-06-08 16:01:34 -05:00
mrq
58fb0a84db added experimental NAR only model (inferences text length, need more experimenting), AudioEmbedding logic cleanup (I still think it's being done wrong) 2024-06-08 15:42:02 -05:00
mrq
e35a91c67a ugh 2024-06-07 21:56:14 -05:00
mrq
7d6fff24f9 un-tensor'd quant_level marker since it doesn't need to be one (I forgot why I had it as one but nothing seems to need it as a tensor that didn't already make it one) 2024-06-07 20:46:22 -05:00
mrq
b0158a61d5 fixed some logic errors with training (grabbing wrong quant level...) 2024-06-07 20:34:36 -05:00
mrq
eafa622be2 I forgot the actual reason I was cleaning things up was to re-include prom loss calculation (I realized the reason I did this was because of an prom embedding oversight, it seems to work now) 2024-06-07 20:29:25 -05:00
mrq
da8242d086 finally got around to removing omegaconf 2024-06-07 20:23:53 -05:00
mrq
4ade2b60ee ugh 2024-06-06 21:57:11 -05:00
mrq
f9f309281a ugh 2024-06-06 20:55:27 -05:00
mrq
a5c90348d9 head hurt 2024-06-06 20:51:31 -05:00
mrq
516b0894d7 m 2024-06-06 19:41:26 -05:00
mrq
ee25d2e62e removed the need to supply targ_list + different AudioEmbedding + other things 2024-06-06 18:52:41 -05:00
mrq
fcac9503e2 cleanup 2024-06-06 13:08:02 -05:00
mrq
b2194b859a re-added loading multiple models because I'm now entertaining having split AR/NAR models again (and need a way to load both at once) 2024-06-06 09:48:43 -05:00
mrq
b05a905b95 ugh 2024-06-05 21:02:05 -05:00
mrq
4073656293 oops 2024-06-05 20:53:10 -05:00
mrq
ff6fe6f1bc cleanup 2024-06-05 20:30:43 -05:00
mrq
880b4ecd1b cleanup, putting some thoughts in comments before I forget about them 2024-06-05 19:50:06 -05:00
mrq
3cfc8a96bb oops 2024-06-05 10:30:04 -05:00
mrq
48cd1054f9 madness 2024-06-04 23:48:51 -05:00
mrq
9e3f2e300f experimental "just have a token for what rvq level we're on" that seems to help all models (mamba almost works, but it might just have to be relegated as a pure AR model) 2024-06-04 23:23:31 -05:00
mrq
e0886c5a78 re-added mamba as a possible non-experimental arch backend (test trainer will set it as AR only, doing any NAR tasks lobotomizes it) 2024-06-04 22:41:22 -05:00
mrq
687c71e028 disable accuracy calc because it breaks with actual batched training even though it shouldn't 2024-06-04 22:13:44 -05:00
mrq
d005e24953 oops 2024-06-04 22:10:04 -05:00
mrq
0f7f3ae754 added loss calc split and acc for experimental model 2024-06-04 22:04:40 -05:00
mrq
014e565c4b tweaks 2024-06-04 20:41:13 -05:00
mrq
6d5bd0156a fixes 2024-06-04 18:50:48 -05:00
mrq
ed3aeaf3a1 copy pasted from test to actual trainer 2024-06-04 18:40:30 -05:00
mrq
0aa01ba31a forgot one crucial detail (you *need* the previous RVQ level to keep coherence between all RVQ levels) (experimental deinterleaved is a bit crusty though) 2024-06-04 18:30:30 -05:00
mrq
2ffad5cb6f typo 2024-06-04 14:20:57 -05:00
mrq
406ff7bbe1 re-implemented config.model.interleave for the HF-compat experimental method 2024-06-04 14:19:52 -05:00
mrq
c93d5863fd fixes 2024-06-04 00:07:00 -05:00
mrq
186b93a77e oops 2024-06-03 22:35:55 -05:00
mrq
e50edc3b48 added a flag to convert to a HF compatible model on export by stitching things 2024-06-03 22:34:47 -05:00
mrq
934672252b feverish cleanup 2024-06-03 21:28:49 -05:00
mrq
7feeb944a0 probably insane with even entertaining going this route 2024-06-03 20:26:27 -05:00
mrq
c2a436d368 somehow between training sessions grad_norm = None even though it worked before 2024-06-02 08:29:27 -05:00
mrq
c1fcd889d5 reverted automatically disabling split loss calc, since it seems that it's actually cacling loss on prom causes the oddities, maybe 2024-06-01 12:34:59 -05:00
mrq
8cf176ab46 ugh 2024-06-01 10:46:42 -05:00
mrq
827cf632e7 report current loss scale and adjust grad norm by loss scale (for deepspeed) 2024-06-01 10:44:32 -05:00
mrq
d0ebce6bac ugh 2024-06-01 10:30:13 -05:00
mrq
39bc019142 actually save per-rank sampler states 2024-06-01 09:46:32 -05:00
mrq
74df2f5332 split sampler dict by global_rank, also handle splitting dataset paths by global_rank if sampler_type == path (because I do not trust DistributedSampler) (need to test) 2024-06-01 09:29:49 -05:00
mrq
31785f4eeb actually don't default to compute split losses, test bitnet model doesn't seem to be doing things right (despite debug printouts showing theyre roughly the same logit/loss sequences, could just be bitnet linears being not up to par on actual models) 2024-06-01 09:12:51 -05:00
mrq
e9c87060df oops 2024-05-31 22:22:28 -05:00
mrq
b482ca19ff added model config option to set KV head count for MQA/GQA instead of MHA for llama-based models (i think its very negligible both ways on such a small model size) 2024-05-31 19:32:37 -05:00
mrq
e15c6c74c3 correctness 2024-05-30 20:50:45 -05:00
mrq
da473295b7 better way to compute per-segment losses 2024-05-28 19:29:54 -05:00
mrq
6c49ad06a3 forgot to reinclude mult by loss factors 2024-05-27 20:40:21 -05:00
mrq
b82f0d5c0c finally nailed the issue that caused logging to break on one machine but not another (bitnet includes zetascale which is a parasite that will break logging) 2024-05-27 19:47:58 -05:00
mrq
c0ac84c795 uh 2024-05-27 19:05:56 -05:00
mrq
197d517181 ugh 2024-05-27 17:09:35 -05:00
mrq
5af6f41c94 added loss calcs against prom (requires the right settings for not shit results, disabled by default) 2024-05-27 08:43:00 -05:00
mrq
05cd8b797e nevermind it breaks training 2024-05-25 18:03:43 -05:00
mrq
85f9684720 some cleanup 2024-05-25 17:46:52 -05:00
mrq
d760924719 added kludgy eval only so I don't have to start training, type eval, stop training, then delete the logs for that session 2024-05-25 17:39:51 -05:00
mrq
ddbacde0d1 DAC just doesn't work well enough...... 2024-05-25 11:07:52 -05:00
mrq
e3ef89f5aa 100x better for subtrain/eval to be by group instead 2024-05-19 16:40:14 -05:00
mrq
458b95d196 added option to split between text loss and audio loss (to-do: document this better), because it may or may not be a problem with LLaMA-backed models because my loss hovers around 3.9 / 56% accuracy despite sounding decent at the moment 2024-05-19 11:23:56 -05:00
mrq
74e531d391 ugh 2024-05-18 12:02:56 -05:00
mrq
4bc7e5a6d1 fix loading without needing an hdf5 dataset already prepped (and some other incidental speedups during dataloader prep) 2024-05-18 07:14:26 -05:00
mrq
d88a5ca183 ugh 2024-05-16 07:25:33 -05:00
mrq
d9aabfa3ae final tweaks, hopefully, again 2024-05-15 23:04:19 -05:00
mrq
8d79f78e0a god I need to replace omegaconf 2024-05-12 14:01:52 -05:00
mrq
5eb5db7f7f just don't use DAC 24Khz, it's bad 2024-05-12 13:41:17 -05:00
mrq
230da8b559 should be the final things to scramble around for, DAC's 24KHz model is unusable for this, but both encodec's 24KHz and DAC's 44KHz work 2024-05-12 13:22:08 -05:00
mrq
2437a86efa ugh 2024-05-12 13:02:15 -05:00
mrq
4f1593c8db a bunch of shit to salvage my old encodec-quantized audio because dac-encoded audio just does not want to converge 2024-05-12 10:17:29 -05:00
mrq
917eeb40d2 ughhh 2024-05-12 08:22:39 -05:00
mrq
9910c75d5a checkpointing for bitnet impl 2024-05-12 07:52:54 -05:00
mrq
14709ac67f ughh 2024-05-12 07:30:59 -05:00
mrq
3774fcbdee ugh 2024-05-11 22:58:38 -05:00
mrq
856545f8bb nan loss detection (should have added it earlier), loss scaling for local backend + fp16 2024-05-11 22:23:29 -05:00
mrq
a755eb3c62 ugh 2024-05-11 17:34:45 -05:00
mrq
88e9b9caff local ddp fix 2024-05-11 17:29:01 -05:00
mrq
3337c69e5a leverage between xformers and torch.backends.cuda.sdp_kernel for attention 2024-05-11 17:14:05 -05:00
mrq
d33c7bb7cf ugh 2024-05-11 16:47:19 -05:00
mrq
0b6499601b sanitizing 2024-05-11 16:31:05 -05:00
mrq
71e373064f remove redundant loss, tweak readme 2024-05-11 15:02:47 -05:00
mrq
04a80d6b55 maybe it's better to be more explicit in deepspeed configs 2024-05-11 13:57:43 -05:00
mrq
4d93a16ef7 might just be better to explicitly define prompt duration ranges, especially under a "train small contexts then increase it" training paradigm 2024-05-11 09:50:54 -05:00